
JODA: A Vertically Scalable, Lightweight JSON
Processor for Big Data Transformations

Nico Schäfer
TU Kaiserslautern (TUK)
Kaiserslautern, Germany
nschaefer@cs.uni-kl.de

Sebastian Michel
TU Kaiserslautern (TUK)
Kaiserslautern, Germany

michel@cs.uni-kl.de

Abstract—We describe the demonstration of JODA (Json On
Demand Analytics), an approach to handling large amounts of
JSON documents in a vertically scalable manner. With JODA, the
user can import, filter, transform, aggregate, group, and export
documents with a simple PIG-style query language, offering fast
execution speed. This is achieved by utilizing a multithreaded
architecture over disjoint, read-only containers of data that
are processed in parallel, similar to what RDDs are to Spark.
Containers are augmented with auxiliary information like Bloom
filters and adaptive indices and all containers are processed
in parallel by individual threads. By avoiding locks, latches,
and synchronization beyond simple thread pooling, we do not
risk contention and therefore maximize resource utilization. The
demonstration scenarios aim at engaging visitors with several
data analytics tasks around large, real-world datasets that are to
be solved with the help of JODA, and further gives insights on
system internals and the installation/configuration process.

Index Terms—in-memory, json, semi-structured

© 2020 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
doi:10.1109/ICDE48307.2020.00155

I. INTRODUCTION

Data scientists and practitioners are commonly faced with
large amount of structured or semi-structured data, often in
form of CSV or JSON files, which need to be processed,
analyzed, stored, or published. For this task, tools have to be
used that are ideally designed for these use cases or provide
the performance needed to explore millions of documents in
a timely fashion. Many traditional relational database man-
agement systems (RDBMS) were augmented with features to
support semi-structured data formats like JSON. But these
were designed for structured data with a fixed schema and only
provide limited functionality. Additionally, they are burdened
by overhead like the ACID paradigm, which is not mandatory
for simple exploration tasks. NoSQL document stores, on
the other hand, are designed specifically for query evaluation
of semi-structured documents, without explicit support of
transactions or rich query languages. Such NoSQL stores are
optimized for horizontal scaling and seemingly fall short in
scaling vertically, that is, they do not fully exploit available
hardware resources of a given machine to evaluate queries.

Furthermore, are they also designed to provide durable storage
for documents and often transform them into an optimized
internal representation, leading to a slow import step, which
is not in the spirit of “NoDB” [1] solutions that would avoid
heavy indexing at the first place. As the JSON format is now
widely spread, lightweight tools were created for exploration
and analysis of JSON files in the terminal. But these tools
were often not designed for huge workloads and only make
use of a single thread. Thus, often the only choice is to write
custom software, which is tailored exactly to the given data set
and task. This is time-consuming and may require knowledge
of the data and programming skills that may not be available.

JODA is designed as a very lean, seemingly simple tool,
optimized for ad-hoc data transformations and aggregations of
raw JSON data on a single, multi-core system. One can think
of it as a command line tool for JSON data manipulation and
transformation, as an enabling, filter and aggregation, step to
further processing or publication. The key features of JODA
are:

• Fast execution times by fully utilizing available system
resources and a clear focus on core features set.

• Simple query language for selection, projection, and
aggregation.

• Automated dynamic indexing, depending on data and
query load.

• Adaptive in-memory or file-based evaluation, depending
on available resources.

• Easy to deploy and use, but highly configurable if re-
quired.

With the proposed demonstration, the ICDE audience is
invited to handcraft queries over tens to hundreds of gigabyte
data in a JODA instances deployed on a local 1TB RAM, 96
cores server as well as on a off-the-shelf consumer laptop we
will bring along. The demonstration scenarios allow investi-
gating internal features of JODA as well as hands-on solving
data analytics and transformation tasks over large amounts of
Twitter tweets and other benchmark datasets.

II. RELATED WORK

The work on JODA is related to three recent research
directions in data management. First, work on processing raw
data without heavy, upfront indexing, like the NoDB approach
by Alagiannis et al. [1] and more recent related approaches [2],

https://doi.org/10.1109/ICDE48307.2020.00155


JSON
JSON

JSONJSON

JSON

JSON

JSONJSON

JSON
JSON

Filter&Indices

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON DocsJSON

Filter&Indices

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON Docs
JSON

Filter&Indices

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON DocsJSON

Filter&Indices

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON

JSON Docs

Immutable
Containers

Collections

Main Memory

Disk or NAS

"cold" or temp.
 containers

JODA

input file(s)parse

load
evict

Fig. 1: High-level architecture of JODA. Documents are
parsed and stored in containers. Collections are named
sets of containers, representing individual datasets.

[3]; respectively approaches aiming at fast integration/loading
of raw files into database systems [4]. Second, systems and
foundations around the NoSQL “movement” with application-
tailored approaches and less ACID, with approaches like Ama-
zon Dynamo, the Apache Spark/SQL stack, and MongoDB.
Third, there is research on in-memory databases that exploit
modern multi-core machines [5], [6]. JODA is not meant to
be a database or data store, it is designed as an extremely
lightweight data processing tool, for data transformations and
aggregations. It is in strong contrast to NoSQL document
stores or data processing using MapReduce or Spark, but
borrows provenly beneficial concepts from various approaches,
like the RDD-style containers, the PIG-style query language,
query caching, and adaptive indexing. Parsing JSON docu-
ments is a relatively costly task and there is recent advances [7]
on novel parsers tailored to the peculiarities of JSON, which
could be integrated into JODA. The need for simple JSON
processors have been partially addressed with tools like jq,
which provides command-line JSON processing capabilities
and is available within the standard repositories of many Linux
operation systems. This tool enables the user to pipe JSON text
into the program and process these documents using a query
language. The output can itself be piped into other processes,
thus providing JSON capabilities to the command line. How-
ever, the applicability of such tools is often confined to single
threads or other restrictions, rendering them inapplicable for
handling large(r) amounts of data in acceptable response times.

III. THE JODA APPROACH

The internals of JODA are centered around containers, as
shown in Fig. 1, a simple abstraction that represents a set
of JSON documents and, if any, stores associated indices
that describe the documents of the container. Collections are
named sets of containers, representing individual datasets.
There is no global directory to, for instance, map JSON paths
to containers, also there are no global indices on numeric
or textual attributes of documents. Each query is evaluated
on a specific collection of documents, which may first have
to be imported, from raw input files, or from previously

#import entire directory containing JSON files
LOAD twitter FROM FILES "twitter/";
#or reading single file
LOAD twitter FROM FILE "twitter.json";

Listing 1: JODA import commands

computed and stored collections. The user may choose to
filter the set of documents, by providing a filter predicate,
which is evaluated against every document in the set. This
predicate consists of functions and can access all values
contained in a document. All selected documents may then
be transformed into one or multiple output documents, by
creating and modifying attribute names and values. Optionally,
it is possible to aggregate these documents into a single result
document. The result set can then be stored in the system or
be output to the user.

A. Parsing

To enable the parsing of different file formats and sources
(cf., Listing 1), JODA is able to use multiple readers at the
same time. Each reader is responsible to transform sources into
one or multiple strings, each containing one document. JODA
uses RapidJSON1 to parse the document into a DOM-tree. The
parsed documents are stored in containers and are associated
with a specific collection name. Containers and collections
are read only. Through queries, collections are transformed
into new collections, e.g., by selecting all tweets of a certain
geolocation and to project the attributes on author, name, and
language. Ideally, the amount of available memory is large
enough to accommodate all containers of all collections that
are currently relevant to a user, hence, have been loaded.
If this is not the case, containers can be serialized to disk,
and loaded on demand. This serialization lowers the query
performance, but enables JODA to evaluate large data sets
also on commodity hardware.

B. Per-Container Bloom Filter and Indices

Auxiliary data structures to speed up processing can be
stored together with the documents inside containers. JODA
uses Bloom filter on JSON schema paths for skipping whole
containers and database cracking [8], [9] for comparable data
types. This index extracts the numerical attributes of multiple
documents and stores them in a cracking column. The column
is then iteratively cracked into smaller parts, depending on the
query, and an index for fast access is built. Internally, this
index is implemented as an AVL tree, where the nodes are
pivot elements and the leaves are sets of document ids.

In order to allow skipping entire containers at query time,
Bloom filter [10] are computed per container. This index is
created at parsing time by adding all attribute-paths, contained
in all documents. As containers are finalized after parsing, the
filter does not need to be adjusted after its initialization. Before
evaluating the filter step, the Bloom filter is queried against all

1https://github.com/Tencent/rapidjson

https://github.com/Tencent/rapidjson


LOAD twitter FROM FILES "/twitter"
CHOOSE ’/lang’ == "EN"
AS (’/user’:’/user’),(’/text’:’/text’),

(’/lang’:"English")
STORE AS FILE "english_tweets.json";

Listing 2: Sample query

mandatory paths in the predicate. Mandatory paths, are paths
referenced in parts of the predicate that are required (i.e., all
paths that are not within OR expressions). The container is
skipped, if at least one such path is certainly not contained in
any document of the container.

Additionally, a simple query cache is implemented to
rapidly answer queries or subsets of queries that were posted
before, without touching the documents. For each query, the
filter predicate is stored, together with a set of document ids
within the container. If the same filter predicate is used at a
later time, the result can be returned without accessing the
documents.

C. Memory Management

Most of the operations in JODA are performed in-memory.
The documents themselves are stored in DOM-trees that may
be changed dynamically. Each query may have to copy the
whole tree or parts of it multiple times for each document to
build the result documents. Each of these operations requires
memory (de-)allocations, which are relatively slow.

JODA uses memory-pool allocators to reduce the amount of
required OS (de-)allocation instructions. All documents within
a container share the same memory-pool. Each document
related allocation uses this pool to receive a range of pre-
allocated memory in a fraction of the time it would require
to allocate the memory on the heap. As no documents in a
container can be removed or changed, only allocations are
allowed. This makes keeping track of pointers and imple-
menting deallocation procedures unnecessary. To remove the
documents from memory, all documents in a container have
to be removed and the memory-pool has to be deallocated
completely.

D. Query Language

We implemented a simple PIG-style query language in
JODA. The queries consist of up to six commands, enabling
the user to import (LOAD), filter (CHOOSE), transform (AS),
aggregate (AGG), export (STORE), and delete (DELETE) data.

Listing 2 shows a sample query that is loading twitter data
from a directory containing JSON files. Subsequently, the
query is then filtering out non-English tweets, simplifies these
tweets, and finally exports the result into a file on the file
system.

A variety of functions, like simple arithmetics, string ma-
nipulation, statistics, and meta-data retrieval, are implemented
to interact with the documents. These functions can be
used during the filter, transformation and aggregation step.

Furthermore, JODA provides basic capabilities for grouping
documents by value.

E. Query Evaluation

The filter, transform, and aggregation phases, are executed
parallel on multiple containers within the chosen collection.
For this, a dynamic pool of query threads is created. Each
of these threads fetches a container, evaluates the query on it
and potentially outputs a result container, which is put into the
result collection in return.

Before executing the query, it is optimized using a combina-
tion of techniques. Filter predicates may contain sub-predicates
that could be evaluated without documents. For example, is it
possible to calculate SUM(1,1) or answer
SCONTAINS("Hello World","Hello") without ac-
cessing any attributes of documents. After parsing, the system
will try to find these occurrences, by traversing the predicate
tree, a representation of the predicate, where each function
and constant value is a node. Starting at the bottom, each of
these functions is replaced by the static result value, until no
more functions can be replaced. If the whole filter predicates
is replaced by either a TRUE or FALSE constant value, the
filter step is executed without accessing documents or indices.

The query may also contain transformation functions that
return more than one document. For example, is a normal
copy transformation (e.g., copy JSON pointer ’/text’ to
destination pointer ’/newtext’) executed once per docu-
ment. Multi-document transformations (e.g.: splitting up an
array and copying each element into a new document) generate
multiple new documents from a single source document. The
order of these transformations has a large impact on how many
copy operations are executed. To reduce the amount of these
operations, JODA reorders the transformation functions. First,
all single-document functions are executed to create a single
template document. This document is then passed to the multi-
document transformation functions, which will create multiple
result documents. This potentially reduces the number of copy
operations from n ∗ K to n + K, where n is the number of
single-document functions and K is the number of documents
created by the multi-document functions.

IV. DESCRIPTION OF DEMONSTRATION

Attendees of our demo can experience the entire workflow
of installing and configuring JODA and start exploring and
processing large JSON datasets with it. We will provide
several real-world data sets and benchmarks like NoBench.
For instance, several GB of Twitter tweets, in the native JSON
syntax obtained through the Twitter API, can be explored by
users during an interactive session. Queries can be executed
locally on the provided laptop or remotely on our 96 core, 1TB
RAM server to witness the versatility of the program in regards
to system configurations. We will also provide USB sticks and
download links for a tarball, respectively Debian package, to
allow users installing the software on their own laptops. A
demonstration video of JODA is available on YouTube under
https://www.youtube.com/watch?v=xjv8yDw8Z5I.

https://www.youtube.com/watch?v=xjv8yDw8Z5I


(a) Result Display (b) Screenshot of Query Execution Display

Fig. 2: Screenshots of JODA (images cropped for readability)

A. Querying

We provide a set of query templates users can use to
gradually construct results toward solving small data science
problems. Users are also free to write additional queries. For
example could a user get all hashtags in a Twitter dataset by
using the following query:

LOAD twitter
AS (’’: FLATTEN(’/entities/hashtags’))
AGG (’/hashtags’: DISTINCT(’/text’))
STORE ht;

Listing 3: Computing distinct hashtags in JODA

While the queries are executed, users can investigate the
resource utilization of the system in terms of CPU usage and
memory allocation, as shown in Fig. 2b. In another task, geolo-
cations can be extracted from the Twitter dataset, according
to user-provided keywords or #hashtags and translated into
the GeoJSON2 format. The extracted locations can then be
used to visualize the tweets by placing them on a map using
geojson.io.

B. Performance Comparison

We prepare equivalent queries in MongoDB, as well as
UNIX standard tools like grep and sed, and dedicated JSON
processing tools like jq3. Users can experience the ease of
use and significant performance gains of JODA.

In experiments we have conducted on Twitter data, com-
paring the performance of JODA to competitors MongoDB,
Spark, and variants of Postgres (using Text or JSONB for
storing JSON content), we have seen up to one order of mag-
nitude performance gains over Spark and MongoDB (running
in local, centralized server mode) and up to three orders of
magnitude improvements over Postgres.

C. Setup and Configuration

Finally, a big benefit of JODA is the ease of setup and
modest dependency on third party libraries, e.g., compared to
what comes along with a Spark installation. We show users
how to bring a bare Linux installation running on an AWS
host to install and get started with JODA, in literally less than
a minute.

2https://tools.ietf.org/html/rfc7946
3https://stedolan.github.io/jq/

We will demonstrate that the default settings are set to
sensible values, like container sizes, such that the program
utilizes all available resources of the system (cf., Fig. 2b).
We invite visitors to execute the same query under different
configurations and to compare execution time and resource
consumption.

V. CONCLUSION

We proposed the demonstration of JODA, a tool designed
for high-performance, easy-to-use data exploration, analysis,
and transformation, for large amounts of JSON data. It uses
a custom, PIG-style query language, which integrates path
expressions as first class citizens and supports dynamic data
types for all operations. JODA is optimized for vertically
scaled machines, but supports deployment on low end ma-
chines, too. We invite the ICDE audience to get engaged with
JODA, by hands-on experiences in a pre-selected or open set
of tasks over different datasets and scales.

REFERENCES

[1] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki,
“Nodb: efficient query execution on raw data files,” in Proceedings of
the 2012 ACM SIGMOD International Conference on Management of
Data. ACM, 2012, pp. 241–252.

[2] S. Palkar, F. Abuzaid, P. Bailis, and M. Zaharia, “Filter before
you parse: Faster analytics on raw data with sparser,” PVLDB,
vol. 11, no. 11, pp. 1576–1589, 2018. [Online]. Available: http:
//www.vldb.org/pvldb/vol11/p1576-palkar.pdf

[3] M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and
A. Ailamaki, “Slalom: Coasting through raw data via adaptive
partitioning and indexing,” PVLDB, vol. 10, no. 10, pp. 1106–
1117, 2017. [Online]. Available: http://www.vldb.org/pvldb/vol10/
p1106-olma.pdf

[4] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Reiser, A. Kemper,
and T. Neumann, “Instant loading for main memory databases,”
PVLDB, vol. 6, no. 14, pp. 1702–1713, 2013. [Online]. Available:
http://www.vldb.org/pvldb/vol6/p1702-muehlbauer.pdf

[5] V. Leis, M. Haubenschild, A. Kemper, and T. Neumann, “Leanstore:
In-memory data management beyond main memory,” in 34th IEEE
International Conference on Data Engineering, ICDE 2018, Paris,
France, April 16-19, 2018, 2018, pp. 185–196. [Online]. Available:
https://doi.org/10.1109/ICDE.2018.00026

[6] X. Yu, G. Bezerra, A. Pavlo, S. Devadas, and M. Stonebraker, “Staring
into the abyss: An evaluation of concurrency control with one thousand
cores,” PVLDB, vol. 8, no. 3, pp. 209–220, 2014. [Online]. Available:
http://www.vldb.org/pvldb/vol8/p209-yu.pdf

[7] Y. Li, N. R. Katsipoulakis, B. Chandramouli, J. Goldstein, and
D. Kossmann, “Mison: A fast JSON parser for data analytics,”
PVLDB, vol. 10, no. 10, pp. 1118–1129, 2017. [Online]. Available:
http://www.vldb.org/pvldb/vol10/p1118-li.pdf

[8] S. M. Stratos Idreos, Martin L. Kersten, “Database cracking,” in Pro-
ceedings of the 3rd International Conference on Innovative Data Systems
Research (CIDR), Asilomar, California, 2007, pp. 68–78.

https://tools.ietf.org/html/rfc7946
https://stedolan.github.io/jq/
http://www.vldb.org/pvldb/vol11/p1576-palkar.pdf
http://www.vldb.org/pvldb/vol11/p1576-palkar.pdf
http://www.vldb.org/pvldb/vol10/p1106-olma.pdf
http://www.vldb.org/pvldb/vol10/p1106-olma.pdf
http://www.vldb.org/pvldb/vol6/p1702-muehlbauer.pdf
https://doi.org/10.1109/ICDE.2018.00026
http://www.vldb.org/pvldb/vol8/p209-yu.pdf
http://www.vldb.org/pvldb/vol10/p1118-li.pdf


[9] F. M. Schuhknecht, A. Jindal, and J. Dittrich, “An experimental
evaluation and analysis of database cracking,” VLDB J., vol. 25,
no. 1, pp. 27–52, 2016. [Online]. Available: https://doi.org/10.1007/
s00778-015-0397-y

[10] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

https://doi.org/10.1007/s00778-015-0397-y
https://doi.org/10.1007/s00778-015-0397-y

	Introduction
	Related Work
	The JODA Approach
	Parsing
	Per-Container Bloom Filter and Indices
	Memory Management
	Query Language
	Query Evaluation

	Description of Demonstration
	Querying
	Performance Comparison
	Setup and Configuration

	Conclusion
	References

