Distributed Data Management SS 2015

Prof. Dr.-Ing. Sebastian Michel —l TECHNISCHE UNIVERSITAT
MSec. Evica Milchevski, MSc. Kiril Panev I = KAISERSLAUTERN
TU Kaiserslautern, FB Informatik — Lehrgebiet Informationssysteme

Sheet 6: Handout 25.06.2015, Presentation 07.07.2015 http://dbis.informatik.uni-kl.de

Assignment 1: Causal Consistency (1P.)

Given the following processes reading from and writing to a data store.

Process 1: R(z)xg W (z)ay W(z)zo

Process 2: R(z)xy W (y)yo

Process 3: W(y)yr R(z)xy W (z)xs

Process 4: Wi(z)zo W(z)z1 R(z)xo W(z)zs

For clarification, consider the following example of a causal dependency graph. We denote a write to key
k with unique version ¢ as k;, so the graph contains two writes: a write 1 to key x and a second write
y1 to key y such that x; happens-before y;:

1 — U

According to the definition of causal consistency, if a process reads yi, then its subsequent reads from
x must return z; or another write x; such that x; is concurrent to x; or x1y — x;. It is not causally
consistent if a process reads y; then reads an older value xo with zq — z1 because happens-before is not
respected.

(a) Draw the causal dependency graph between the individual data values z;, y; and z; and write next
to each value the corresponding vector clock.

(b) Consider the following clients that read from the data store. For each of them, determine if, given
the values read, the data store provides causal consistency or not. Explain your answers.

Client 1: R(z)xy R(y)y1
Client 2: R(x)x1 R(y)yo R(x)z2
Client 3: R(y)y1 R(z)x2
Client 4: R(2)zs R(y)yo
Client 5: R(z)z3 R(y)xo
Assignment 2: Consistent Hashing (1P.)

Implement a simulation of consistent hashing to study the load balancing characteristics under different
parameters. Create 100000 random numbers (or strings) as keys. Create 100 node identifiers. Use MD5
hashing and map the nodes to the id space of 0...232 by interpreting the MD5 hash of the node id as
an integer (long), modulo 232. Assign the 100000 keys to the nodes according to the consistent hashing
principle (smallest node hash that is larger than the key’s hash; taking also care of the case around zero).
Count for each node the number of distinct keys is obtained to store, i.e., its load (do not forget the zero
counts).

(a) Compute the median, average, minimum and maximum load as well as the 25% and 75% percentiles
of the load distribution (i.e., the load value that is larger than x% of the other load values).

(b) Create a plot (e.g., with Excel or Gnuplot) of the Lorenz curve of the load distribution. To do
so, sort the load values in ascending order (on the x-axis). For each value on the x-axis, put
the cumulative load on the y-axis. See, http://en.wikipedia.org/wiki/Lorenz_curve, for more
details and explanations.

http://en.wikipedia.org/wiki/Lorenz_curve

Distributed Data Management SS 2015

Prof. Dr.-Ing. Sebastian Michel —l TECHNISCHE UNIVERSITAT

MSc. Evica Milchevski, MSc. Kiril Panev I = KAISERSLAUTERN

TU Kaiserslautern, FB Informatik — Lehrgebiet Informationssysteme

Sheet 6: Handout 25.06.2015, Presentation 07.07.2015 http://dbis.informatik.uni-kl.de

(¢) Compute the Gini coefficient as an indicator for load balancing. (See http://en.wikipedia.org/
wiki/Gini_coefficient)). The Gini coefficient can be thought of as the ratio of the area that lies
between the line of equality (perfect balancing, i.e., x% of the nodes have x% of the keys) and the
Lorenz curve (of part b)).

(c) Extend the implementation such that each node is having T virtual nodes, by placing the node T
times in the ring. Compute for T' = 1,2, 3,4,5,6,7,8,9, 10 the Gini coefficient as in part c).

Assignment 3: CQL (1P.)

Considering a stream-processing engine with sliding window semantics as introduced in the lecture. We
have access to the following streams:

S1 (timestamp, sensorld, temperature, humidity, co2, xlocation, ylocation)
S2 (timestamp, sensorld, carld, laneld)

lane 1 ‘

Sensor x

(a) Specify a CQL query that computes a stream of the sliding average of temperaturex (1+humidity)
over a 10 minutes window, every 10 seconds, for all sensors in 1000 meters around (xlocation =
40.67, ylocation = —73.94). Use a hypothetical user defined function distancelnMeter(x1,y1, z2,y2)
to compute the distance based on the geographic coordinates.

(b) Specify a CQL query that computes the minimal time distance of two cars on the same lane within
a window of size of 60 minutes.

http://en.wikipedia.org/wiki/Gini_coefficient
http://en.wikipedia.org/wiki/Gini_coefficient

