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Announcements

ÅDoodle link for exam registration posted

ÅJust place your name ONCE (the IRDM lecture has 
its own Doodle). Write down date/time before 
clicking the save button.

ÅFirst-come, first-served.

ÅRead instructions on website.

ÅExam dates are on 30., 31. July and 3., 4., 5., 6. 
August

ÅRe-exams in late September / early October.

ÅMore exam dates possible in beginning of 2016.
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Announcements (2)

ÅQuestion & Answer Session roughly 1 week before 
exams start; in the exercise slot and room.

ÅIf you want to do the exam in German, send an 
email to Heike Neu (neu@cs.uni-kl.de) stating so.

Å¢ƘŜ ŘŜǇŀǊǘƳŜƴǘΩǎ ƭŜŎǘǳǊŜ ŜǾŀƭǳŀǘƛƻƴ Ƙŀǎ ǎǘŀǊǘŜŘΦ 
Please participate and give feedback!

ÅYou can also win something. More info under 
https://vlu.cs.uni-kl.de/
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Road Map

ÅThis lecture today will consider NoSQLSystems 
with consistency models and how and where 
to place the data (replicas)

ÅWe will be done latest next lecture with this 
content.

ÅThen, we will look at (distributed) data streams; 
roughly two lectures.

ÅThen, we will look at Cloud Computing; one 
lecture.

ÅThen, still open, one lecture.
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Vector Clocks

ÅIdea: each node gets separate counter

ÅBy C. Fidgeand F. Mattern in 1988 (independently)

ÅVector clock: Vector of counters

[c0, c1Σ ΧΣ cn]    ci is counter for node i

Initialization: all ci are zero: [c0, c1Σ ΧΣ cn]

Upon event at local event at node i: node increments 
ci in its vector.

Sendingclock: node i increments ci and sends vector
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Vector Clocks: Merging upon Receive

ÅWhen node i receives clock of other node

ïnode i merges its vector clock VC with the received 
one VCother

ïas follows:

increment own counter ci, i.e., VC[i]=VC[i]+1

for each j do

VC[j]  = max(VC[j], VCother[j])

end
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tim
e

b [2,0,0]

a [1,0,0]

d [4,0,3]

l [0,1,0]

m [1,2,0]

c [3,0,0] n [1,3,2]

o [1,4,2]

p [3,5,2]

q [3,6,2]

v [0,0,1]

w [0,0,2]

x [0,0,3]

y [0,0,4]

z [1,4,5]

Process 1 Process 2 Process 3



ComparingTwo Vector Clocks

ÅVC1 = VC2,  

iff VC1[i] = VC2[i], for all i = 1, é , n

ÅVC1ÒVC2,  

iff VC1[i] Ò VC2[i], for all i = 1, é , n

ÅVC1 < VC2,  

iff VC1Ò VC2 & 

$j (1 Ò j Ò n & VC1[j] < VC2 [j])

ÅVC1 is concurrent with VC2

iff (not VC1Ò VC2 AND not  VC2Ò VC1)
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Example Story

Åά!ƭƛŎŜ, Ben, Cathy, and Dave are planning to meet next week 
for dinner. The planning starts with Alice suggesting they meet 
on Wednesday. Later, Dave also exchanges email with Ben, 
and they decide on Tuesday. Also, Dave discuss alternatives 
with Cathy, and they decide on Thursday instead. When Alice 
pings everyone again to find out whether they still agree with 
her Wednesday suggestion, she gets mixed messages: Cathy 
claims to have settled on Thursday with Dave, and Ben claims 
ǘƻ ƘŀǾŜ ǎŜǘǘƭŜŘ ƻƴ ¢ǳŜǎŘŀȅ ǿƛǘƘ 5ŀǾŜΦ 5ŀǾŜ ŎŀƴΩǘ be reached, 
and so no one is able to determine the order in which these 
communications happened, and so none of Alice, Ben, and 
Cathy know whether Tuesday or Thursday is the correct 
choice.έ
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source: http://basho.com/why-vector-clocks-are-easy/

http://basho.com/why-vector-clocks-are-easy/
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date = Wednesday
vclock= Alice:1

http:// basho.com/why-vector-clocks-are-hard/

ά!ƭƛŎŜΣ .ŜƴΣ /ŀǘƘȅΣ ŀƴŘ 5ŀǾŜ ŀǊŜ ǇƭŀƴƴƛƴƎ ǘƻ ƳŜŜǘ ƴŜȄǘ 
week for dinner. The planning starts with Alice suggesting 
they meet on Wednesday. Later, Dave also exchanges email 
with Ben, and they decide on Tuesday. Also, Dave discuss 
alternatives with Cathy, and they decide on Thursday 
instead. When Alice pings everyone again to find out 
whether they still agree with her Wednesday suggestion, 
she gets mixed messages: Cathy claims to have settled on 
Thursday with Dave, and Ben claims to have settled on 
¢ǳŜǎŘŀȅ ǿƛǘƘ 5ŀǾŜΦ 5ŀǾŜ ŎŀƴΩǘ ōŜ ǊŜŀŎƘŜŘΣ ŀƴŘ ǎƻ ƴƻ ƻƴŜ 
is able to determine the order in which these 
communications happened, and so none of Alice, Ben, and 
Cathy know whether Tuesday or Thursday is the correct 
choice.έ

Start with Aliceôs initialmessage
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date = Tuesday
vclock= Alice:1, Ben:1

http:// basho.com/why-vector-clocks-are-hard/

Now Dave and Ben start talking. Ben 

suggests Tuesday:

ά!ƭƛŎŜΣ .ŜƴΣ /ŀǘƘȅΣ ŀƴŘ 5ŀǾŜ ŀǊŜ ǇƭŀƴƴƛƴƎ ǘƻ ƳŜŜǘ ƴŜȄǘ 
week for dinner. The planning starts with Alice suggesting 
they meet on Wednesday. Later, Dave also exchanges email 
with Ben, and they decide on Tuesday. Also, Dave discuss 
alternatives with Cathy, and they decide on Thursday 
instead. When Alice pings everyone again to find out 
whether they still agree with her Wednesday suggestion, 
she gets mixed messages: Cathy claims to have settled on 
Thursday with Dave, and Ben claims to have settled on 
¢ǳŜǎŘŀȅ ǿƛǘƘ 5ŀǾŜΦ 5ŀǾŜ ŎŀƴΩǘ ōŜ ǊŜŀŎƘŜŘΣ ŀƴŘ ǎƻ ƴƻ ƻƴŜ 
is able to determine the order in which these 
communications happened, and so none of Alice, Ben, and 
Cathy know whether Tuesday or Thursday is the correct 
choice.έ
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date= Tuesday
vclock= Alice:1, Ben:1, Dave:1

http:// basho.com/why-vector-clocks-are-hard/

Dave replies, confirming Tuesday

ά!ƭƛŎŜΣ .ŜƴΣ /ŀǘƘȅΣ ŀƴŘ 5ŀǾŜ ŀǊŜ ǇƭŀƴƴƛƴƎ ǘƻ ƳŜŜǘ ƴŜȄǘ 
week for dinner. The planning starts with Alice suggesting 
they meet on Wednesday. Later, Dave also exchanges email 
with Ben, and they decide on Tuesday. Also, Dave discuss 
alternatives with Cathy, and they decide on Thursday 
instead. When Alice pings everyone again to find out 
whether they still agree with her Wednesday suggestion, 
she gets mixed messages: Cathy claims to have settled on 
Thursday with Dave, and Ben claims to have settled on 
¢ǳŜǎŘŀȅ ǿƛǘƘ 5ŀǾŜΦ 5ŀǾŜ ŎŀƴΩǘ ōŜ ǊŜŀŎƘŜŘΣ ŀƴŘ ǎƻ ƴƻ ƻƴŜ 
is able to determine the order in which these 
communications happened, and so none of Alice, Ben, and 
Cathy know whether Tuesday or Thursday is the correct 
choice.έ
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date = Thursday
vclock= Alice:1, Cathy:1

Now Cathy is suggesting Thursday

ά!ƭƛŎŜΣ .ŜƴΣ /ŀǘƘȅΣ ŀƴŘ 5ŀǾŜ ŀǊŜ ǇƭŀƴƴƛƴƎ ǘƻ ƳŜŜǘ ƴŜȄǘ 
week for dinner. The planning starts with Alice suggesting 
they meet on Wednesday. Later, Dave also exchanges email 
with Ben, and they decide on Tuesday. Also, Dave discuss 
alternatives with Cathy, and they decide on Thursday 
instead. When Alice pings everyone again to find out 
whether they still agree with her Wednesday suggestion, 
she gets mixed messages: Cathy claims to have settled on 
Thursday with Dave, and Ben claims to have settled on 
¢ǳŜǎŘŀȅ ǿƛǘƘ 5ŀǾŜΦ 5ŀǾŜ ŎŀƴΩǘ ōŜ ǊŜŀŎƘŜŘΣ ŀƴŘ ǎƻ ƴƻ ƻƴŜ 
is able to determine the order in which these 
communications happened, and so none of Alice, Ben, and 
Cathy know whether Tuesday or Thursday is the correct 
choice.έ



Comparing Vector Clocks

ÅDave has the following clocks:

ÅConflictbecause neither clocks descends from 
the other.
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date= Tuesday
vclock= Alice:1, Ben:1, Dave:1

date = Thursday
vclock= Alice:1, Cathy:1



5ŀǾŜ wŜǎƻƭǾŜǎ /ƻƴŦƭƛŎǘ Χ

ÅΧ ōȅ ŎƘƻƻǎƛƴƎ ¢ƘǳǊǎŘŀȅ

ÅNew clock tells that it is successor of the two 
previous clocks!
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date = Thursday
vclock= Alice:1, Ben:1, Cathy:1, Dave:2
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date = Thursday
vclock= Alice:1, Ben:1, Cathy:1, Dave:2
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Ben informed Alice about Tuesday, Dave 

informs Cathy and Alice about Thursday.

That means, Alice gets two different 

proposals! A problem?



Again Conflict?

ÅAlice gets from Ben

Åand from Cathy

ÅConflict? No. /ŀǘƘȅΩǎ ŎƭƻŎƪ ƛǎ ǎǳŎŎŜǎǎƻǊ ƻŦ .ŜƴΩǎ
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date = Tuesday
vclock= Alice:1, Ben:1, Dave:1

date = Thursday 
vclock= Alice:1, Ben:1, Cathy:1, Dave:2



And we are Done
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Conflicts and Their Resolution

ÅAssume two or more conflicting versions of the 
same object/item.

ÅWhat can the database do?

ïLimited possibilities since application logic is not 
ƪƴƻǿƴΦ 9ΦƎΦΣ ǘŀƪŜ Ƴƻǎǘ άǊŜŎŜƴǘέ ƻƴŜ

ÅWhat can client software do?

ïFull-fledged resolution, since app logic is known.
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Conflict Resolution: Example

ÅTypical use case at Amazon

ÅMultiple versions of shopping cart 
ïmerged by a union of their contents

ïwhat can go wrong? might put back a 
deleted item (but you wont miss any 
items=>donΩt loose money)

Å[ŜǘΩǎ ǎŜŜ Ƙƻǿ ƻƴŜ ǿƻǳƭŘ ǿƻǊƪ ǿƛǘƘ 
ƳǳƭǘƛǇƭŜ ǾŜǊǎƛƻƴǎ ƛƴ ŀ ǊŜŀƭ ǎȅǎǘŜƳ ΧΦ
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Riak

ÅKey/Value store

ÅWith namespaces (buckets)

ÅQueries:

ïCRUD (create, retrieve, update, delete)

ïMapReduce

ïRiakSearch (i.e., full text search engine)

ïSupport of secondary indices
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http://basho.com/riak/



RiakArchitecture

ÅSet of equal nodes (no master)

ÅPlacement of data: consistent hashing (will 
see later)

ÅReplication (default: 3 per object)

ÅFault tolerant

ÅVarious different setups (choices) for 
consistency: R, W, number of copies, etc.
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http:// docs.basho.com/riak/1.2.1/references/appendices/concepts/Eventual-
Consistency/



Riak: Parameters Last Write Wins and 
Allow Multiple Versions

Åmultiple versions = false

ï[ŀǎǘ ǿǊƛǘŜ ǿƛƴǎ Ґ ŦŀƭǎŜΥ ǘƘŜƴ ǳǎŜ άǘƛƳŜέ ŀƴƴƻǘŀǘƛƻƴǎ 
to objects and TAs for conflict resolution

ïLast write wins = true: then just consider last write.

Åmultiple versions = true

ïLast write wins = false: then retain even concurrent 
writes, client (application) has to resolve

ï[ŀǎǘ ǿǊƛǘŜ ǿƛƴǎ Ґ ǘǊǳŜΥ 5ƻƴΩǘ Řƻ ǘƘƛǎΣ ǳƴǇǊŜŘƛŎǘŀōƭŜ 
ōŜƘŀǾƛƻǊΧΦΦ
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See: http://docs.basho.com/riak/2.0.1/dev/using/conflict-resolution/



API: GET

Åcurl -v http://127.0.0.1:8098/riak/test/ doc

ÅResponse: HTTP/1.1 200 OK

ÅPlus: Content of the document

ÅBut could also end up with

ÅHTTP/1.1 300 Multiple Choices Χ

ÅtƭǳǎΥ  ŀ ƴǳƳōŜǊ ƻŦ ǾŜǊǎƛƻƴǎ Χ
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http://docs.basho.com/riak/1.2.1/references/apis/http/HTTP-Fetch-Object/

http://127.0.0.1:8098/riak/test/doc


Riak: Siblings ςDifferent Versions

Siblings:

16vic4eU9ny46o4KPiDz1f 
4v5xOg4bVwUYZdMkqf0d6I 
6nr5tDTmhxnwuAFJDd2s6G 
6zRSZFUJlHXZ15o9CG0BYl
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http://docs.basho.com/riak/1.2.1/references/apis/http/HTTP-Fetch-Object/



Riak: Get Specific Version

Åcurl -v 
http://127.0.0.1:8098/riak/test/ doc?vtag=16vic
4eU9ny46o4KPiDz1f
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Get ALL Versions

--YinLMzyUR9feB17okMytgKsylvhContent-Type: 
application/ jsonLink: </riak/test>; rel="up" Etag: 
6nr5tDTmhxnwuAFJDd2s6GLast-Modified: Wed, 
10 Mar 2010 17:58:08 GMT{"bar":"baz"}

--YinLMzyUR9feB17okMytgKsylvhContent-Type: 
application/ jsonLink: </riak/test>; rel="up" Etag: 
6zRSZFUJlHXZ15o9CG0BYlLast-Modified: Wed, 10 
Mar 2010 17:55:03 GMT{"foo":"bar"}

.....
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curl -v http://127.0.0.1:8098/riak/test/ doc -H "Accept: 
multipart/mixed"



Comments

ÅGives good overview of what it takes to work 
with Riak. Particularly in terms of managing 
conflicting (multiple) versions.

Åhttps:// github.com/basho/riak-java-client

ÅNext to vector clocks Riak supports also 
dotted version vectors
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More details on conflict resolution in a more recent version of Riak:
http://docs.basho.com/riak/2.0.1/dev/using/conflict-resolution/

https://github.com/basho/riak-java-client
http://docs.basho.com/riak/2.0.1/dev/using/conflict-resolution/


Recap: Configurations
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R/W Configuration Kind of Consistency

W=Nand R=1 Read optimized strong 
consistency.

W=1 and R=N Write optimized strong 
consistency.

W+R<=N Eventualconsistency. Read might 
miss recent writes.

W+R>N Strong consistency. Read will see 
at least one most recent write.



Consistency Levels

ÅIs there something between the extreme 
ŎƻƴŦƛƎǳǊŀǘƛƻƴǎ άǎǘǊƻƴƎ ŎƻƴǎƛǎǘŜƴŎȅέ ŀƴŘ 
άŜǾŜƴǘǳŀƭ ŎƻƴǎƛǎǘŜƴŎȅέΚ

ÅConsider a client is working with a key value 
store
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Recap: Distributed Setup
ÅN copies per record/object, spread across servers
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node1 node2

node3

node4

ƴƻŘŜ ΧƴƻŘŜΧ

Client



Client-Centric Consistency 
and Seen Writes

A client reading a value for a key is seeing a subset 
of the writes to this key; given the past history of 
writes by itself and other clients.
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Client-Centric Consistency: provides guarantees 
for a single client concerning the consistency of 
the accesses to a data store by that client.



Client-Centric Read Consistency 
Guarantees
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Guarantee Explanation

Strong Consistency See all previous writes.

Eventual Consistency See (any) subset of previous 
writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness {ŜŜ ŀƭƭ άƻƭŘέ ǿǊƛǘŜǎΦ 9ΦƎΦΣ 
everything older than 10 
minutes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by 
reader.



Causal Consistency
Å/ƻƴǎƛǎǘŜƴŎȅ ƛǎǎǳŜǎΧΦ
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hǳǊ ŘƻƎΣ /ƘŀǊƭƛŜΣ Ǌŀƴ ŀǿŀȅ ǘƻŘŀȅΦ /ŀƴΩǘ ŦƛƴŘ ƘƛƳΣ 
we are afraid he got overrun by a car! L

Thank God! I am so glad to hear this!

Posted at 9:30am

Posted at 10:20am

Alice

Bob



Causal Consistency (2)
ÅIƻǿ ƛǘ ǿŀǎ ǎǳǇǇƻǎŜŘ ǘƻ ŀǇǇŜŀǊΧΦ
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hǳǊ ŘƻƎΣ /ƘŀǊƭƛŜΣ Ǌŀƴ ŀǿŀȅ ǘƻŘŀȅΦ /ŀƴΩǘ ŦƛƴŘ ƘƛƳΣ 
we are afraid he got overrun by a car! L

Charlieis back!! We are soooohappy!

Thank God! I am so glad to hear this!

Posted at 9:30am

Posted at 10:20am

Posted at 10:00am

Alice

Alice

Bob



Consistency Model

ÅContract between processes and data store, 
specifying how processes interact with data 
store, and what can then be said about the way 
it works 
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Consistency Models 

ÅIn the following we use the notation:

ïWi(x)adescribes that process i writes to data item x 
with value a.

ïRi(x)bdescribes that process i reads from data item 
x and finds value b there.
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Sequential Consistency
ÅResult of any execution is the same as if the operations 

by all processes (nodes) on the data store were executed 
in some specific sequential order.

ÅThe operations of each individual process appear in this 
sequence in the order specified by its program.

Distributed Data Management, SoSe 2015, S. Michel 39

P1:

P2:

P3:

P4:

W(x)a

W(x)b

R(x)b

R(x)b

R(x)a

R(x)a

P1:

P2:

P3:

P4:

W(x)a

W(x)b

R(x)b

R(x)a

R(x)a

R(x)b

A sequentially consistent 
data store

A data store that is not 
sequentially consistent



Causal Consistency
ÅWrites that are potentially causally related must 

be seen by all processes in the same order. 
Concurrentwrites may be seen in a different 
order on different machines.
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P1:

P2:

P3:

P4:

W(x)a

R(x)a W(x)b

R(x)c

R(x)b

R(x)a

R(x)a

W(x)c

R(x)b

R(x)c

This is allowed in a causally-consistent store.

Wi(x)adescribes that process i writes to data item x with value a.
Ri(x)bdescribes that process i reads from data item x and finds value b there.

Notation:



Causal Consistency Example
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P1:

P2:

P3:

P4:

W(x)a

R(x)a

R(x)a

R(x)b

P1:

P2:

P3:

P4:

W(x)a

R(x)a W(x)b

R(x)a

R(x)a

R(x)b

This isvalid in a causally-
consistent data store.

This is not valid in a 
causally-consistent data 
store.

W(x)b

R(x)b

R(x)b

Wi(x)adescribes that process i writes to data item x with value a.
Ri(x)bdescribes that process i reads from data item x and finds value b there.

Notation:



Causal Consistency Properties

ÅStrongest consistency model that is still 
άŀǾŀƛƭŀōƭŜέ ƛƴ ǇǊŜǎŜƴŎŜ ƻŦ ƴŜǘǿƻǊƪ ǇŀǊǘƛǘƛƻƴǎΗ
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Partition 1 Partition 2



Implementing Causal Consistency

ÅNeed to keep track of dependencies

ÅDependency graph needs to be constructed and 
maintained.

ÅFor instance using vector clocks!
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Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica: Bolt-on causal consistency. 
SIGMOD Conference 2013.

The paper below presents an approach that implements causal consistency on top of an 
eventually consistent data store. It gives also a nice overview of eventual and causal 
consistency, individually.



DATA PLACEMENT: CONSISTENT 
HASHING
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Overview 

In the following we will address these questions:

ÅHow is data assigned to machines?

ÅWhere are replicas placed?

ÅHow to reliably get them synced in presence of 
node failures?
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Hash Based Data Placement 

ÅUse of standard hash function f to place data 
to machines

ïm machines, placement based on f(key)

ïe.g., f(key) := U*key + C mod m

ÅDoes this work? What are the pros and cons?
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Problem: Moving Data Around when 
Adding/Removing Machines

ÅAssume data: [13, 34, 11, 9]

ÅFunction: f(k):=17*k mod m 
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0

1

2

3

4

0

1

2

3

m=4 machines m=5 machines

[13, 9]

[34]

[11]

[13]

[34, 9]

[11]



Wish List for Hashing Properties

ÅOnlylocal data movement if machines are

ïadded or

ïremoved

ÅLoad balancing, but strong machines can get 
larger shareof data/work
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Consistent-Hashing:                                   
Cyclic Identifier Space
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064



Place Servers on Ring 
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62

55

7

43

Servers are hashed, by 
standard hash function 
(e.g., based on MAC 
address) to the cyclic 
identifier space.



Place Data to Servers
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62

55

7

43

25

33

2

45

12

50

59

Also the data keys are 
hashed to the same 
identifier space.
Then assigned to node 
with smallest idlarger 
than id of key.



Added Server (id 20)
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62

55

7

43

25

33

2

45

12

50

59

20

Server with id 20 is 
added. We can see 
there is only little 
(local!) re-organization 
required.



Removed Server (id 55)
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20

Server with id 55 is 
deleted. Again, only 
little (local!) re-
organization required.



Consistent Hashing: Formal Definition
ÅGiven a set of items I and a set of bucketsB

ÅA view V is any subset of B

ÅA hash function is given as   f:  2B x I -> B

Åf(V, i) is bucket to which item i is mapped (in 
view V)
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*Kargeret al.: Consistent Hashing and Random Trees: Distributed Caching Protocols for 
Relieving Hot Spots on the World Wide Web. STOC 1997. Section 4.

bƻǘŜ ǘƘŀǘ ǘƘŜ ƻǊƛƎƛƴŀƭ ǇŀǇŜǊϝ ǘŀƭƪǎ ŀōƻǳǘ ŎƭƛŜƴǘǎΩ ǾƛŜǿǎ ƻƴ ŎŀŎƘŜǎ ƛƴ ŀ ²Ŝō 
ǎŜǘǘƛƴƎΦ CƻǊ ǳǎΣ ǿŜ Ŏŀƴ ǎŜŜ άǾƛŜǿǎέ ŀǎ ǘƘŜ ŀǾŀƛƭŀōƭŜ ǎŜǊǾŜǊǎ όōǳŎƪŜǘǎύ ǿŜ ǿŀƴǘ ǘƻ 
put data on.



Consistent Hashing: Formal Properties

ÅBalance: with high probability, each bucket 
gets   O(| I|/| V|) items assigned

Note that standard hash functions fulfill this 
criterion usually easily.
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Means: buckets get roughly the same load in terms of 
number of items assigned



Consistent Hashing: Formal Properties
ÅMonotonicity: Given views V1, V2 with                      

V1 subsetOfV2 

Then f(V2,i) in V1 implies  f(V1, i)==f(V2,i)  

This is actually the part about consistency of 
ά/ƻƴǎƛǎǘŜƴǘ IŀǎƘƛƴƎέΦ When the set of available 
buckets (nodes) changes, items should only move if 
necessary (to preserve an even distribution)
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Means: if a new bucket (node) is added, an item might 
move from an old bucket to a new one, but never from an 
old one to another old one. 



Balance and Monotonicity Fulfilled?
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Consistent Hashing: Implementation
ÅGiven two random hash 

functions:

ïrV maps V to the unit interval

ïrBmaps B to the unit interval

ÅThen

ïf(V,i) should map item i to 
bucket b that minimizes               
| rV(i)-rB(b)|

ïThis is the formal def. by Kargeret al. In Chord 
(Stoicaet al.) and in this lecture, we assign a key to 
the node with smallest id larger than id of the key.
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Both data and 
buckets (servers) are 
mapped to the same 

space.



Virtual Nodes

ÅThe depicted nodes do not necessarily 
correspond to physical machines.

ÅInstead: Machines can have represent several 
nodes in the system.

ÅThat way, stronger machines can get a larger 
share of the load than weak machines.

Distributed Data Management, SoSe 2015, S. Michel 59



Used In

ÅNoSQLǎȅǎǘŜƳǎ ƭƛƪŜ !ƳŀȊƻƴΩǎ 5ȅƴŀƳƻΣ Riak

ÅChord, a distributed hashtable(on top of which 
P2P applications can be built), important here: 
self organization (no central control)
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Ion Stoica, Robert Morris, David R. Karger, M. FransKaashoek, HariBalakrishnan: Chord: A 
scalable peer-to-peer lookup service for internet applications. SIGCOMM 2001: 149-160



Routing in a Consistent Hashing 
ά{ǘǊǳŎǘǳǊŜέ

ÅA client does not know specific server that is 
responsible for key, but some (any) other server

ÅNaïve routing:

ïEach node knows its neighbor

ïSend message to nearest neighbor

ïGetting closer to target node                                           
with each hop

ïBut O(n) cost!
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Routing with Logarithmic Cost

ÅEach node keeps a 
lookup table (also 
called finger table)

ÅAt exponentially 
increasing distances.

ÅPeriodically refreshed.

ÅRouting in O(log(n))
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Key Node

key(this)+1 192.168.434.12

key(this)+2 Χ

key(this)+4

key(this)+8

key(this)+16

key(this)+32

Χ



Finger Table Routing Example
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Chord Ring

p1

p8

p56

p51

p48

p42

p38 p32
p21

p14

p8 + 4

p8 + 8

p8 + 16

p8 + 2

p8 + 32

p8 + 1

p14

p21

p32

p14

p42

p14

fingertable
p8

p42 + 4

p42 + 8

p42 + 16

p42 + 2

p42 + 32

p42 + 1

p48

p51

p1

p48

p14

p48

fingertable
p42

p51 + 4

p51 + 8

p51 + 16

p51 + 2

p51 + 32

p51 + 1

p56

p1

p8

p56

p21

p56

fingertable
p51

k54

Lookup(54)



Node Joining Ring (1)
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p48

p42

k40

k43

k39



Node Joining Ring (2)
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p48

p38

p42

k40

k43

k39

p42 lookup(42)



Node Joining Ring (3)
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p48

p38

p42

k40

k43

k39

p42 lookup(42)

sets succ pointerp42


