Distributed Data Management

Summer Semester 2015
TU Kaiserslautern

Prof. DrIng. Sebastian Michel

Databases and Information Systems
Group (AG DBIS)

http://dbis.informatik.unikl.de/

Distributed Data Management, SoSe 2015, S. Michel

Announcements

A Doodle link for exam registration posted

A Just place your name ONCE (the IRDM lecture ha
its own Doodle). Write down date/time before
clicking the save button.

A Firstcome, firstserved.
A Read instructions on website.

A Exam dates are on 30., 31. July and 3., 4., 5., 6.
August

A Reexams in late September / early October.
A More exam dates possible in beginning of 2016.

Distributed Data Management, SoSe 2015, S. Michel 2

Announcements (2)

A Question& Answer Sessiomoughly 1week before
exams start; in the exercise slot and room

A If you want to do theexam in Germapnsend an
email to Helke Neu (heu@cs.tklide) stating so.

ACKS RSLI NIYSyGiQa f SO0dz
Please participate and give feedback!

A You can also win somethinglore info under
https://viu.cs.untkl.de/

Distributed Data Management, SoSe 2015, S. Michel 3

https://vlu.cs.uni-kl.de/

Road Map

A This lecture
consistency modelsind how and where
to place the data (replicas)

A We will be done latest next lecture with this
content.

A Then, we will look atdistributed) data streams
roughly two lectures.

A Then, we will look atloud Computingone
lecture.

A Then, still open, one lecture.

Distributed Data Management, SoSe 2015, S. Michel 4

Vector Clocks

A ldea: each node gets separate counter
A By CFidgeandF.Mattern in 1988 (independently)
A Vector clockVector of counters

[Co, 2 & 2 ¢ is counter for nodé

Initialization: all ¢ are zero]c,, 2 ¢ 2

Upon eventat local event at node node increments
C In its vector.

clock: noda increments cand sends vector

Distributed Data Management, SoSe 2015, S. Michel 5

Vector Clocks: Merging upon Recelve

A When node receives clock of other node

I nodeil merges its vector clock VC with the received
OHEVcher

I as follows:

iIncrement own counter;a.e., VA[|=VC{]+1
for eachj do

V)] = maxVC[].VGine)

end

Distributed Data Management, SoSe 2015, S. Michel 6

time

d[4,0,3]1®

¢ [3,0,0]

b [2,0,0]1©

a [1,0,0]

Process 1

0[1,4,2]

n[1,3,2]®
m‘w [0,0,2]

® q[3.6,2]
© p [3,5,2]

110,10 @

Process 2

Distributed Data Management, SoSe 2015, S. Michel

©z[1,4,5]

©y [0,0,4]
x [0,0,3]

® v [0,0,1]

Process 3

7

ComparingTwo Vector Clocks

AVC, = VC,,

iff VC,[i]=VC,[i], foralli= 1, é& |,
AVC, OVC,,

iff VC,i] O,[iMc€alli= 1, ¢é |,
AVC, < VC,,

iff VC,O0 V&

$j (1 O |jll<@CH]) & VC
AVC, is concurrent with VC,
iff (not VC, OVC, AND not VC, OVC,)

Distributed Data Management, SoSe 2015, S. Michel 8

Example Story

A a! f, Bed,Eathy, and Dave are planning to meet next week
for dinner The planning starts with Alice suggesting they mee
on Wednesdaylater, Dave also exchanges email with Ben,
and they decide on Tuesday. Also, Dave discuss alternatives
with Cathy, andhey decideon Thursday insteadVhenAlice
pings everyone again to firmut whetherthey still agree with
her Wednesday suggestion, spets mixednessages: Cathy
claims to have settled on Thursday widlave, andBen claims
U2 KIF@S asuaidf SR 2y ¢ teSdashe® |
and so no one is able to determine the order in whiohse
communicationdappened, and so none of Alice, Ben, and
Cathyknow whetherTuesday or Thursday Is the correct
choiceg

source:http://basho.com/whyvector-clocksare-easy
Distributed Data Management, SoSe 2015, S. Michel 9

http://basho.com/why-vector-clocks-are-easy/

date = Wednesday

vclock= Alice:1

Alice

Cathy

Start withméskageceods i niti

G! t A0S .Sys /lFUuKeéeEX YR 51 @S
week for dinner. The planning starts with Alice suggesting
they meet on Wednesday. Later, Dave also exchanges email
with Ben, and they decide on Tuesday. Also, Dave discuss
alternatives with Cathy, and they decide on Thursday
instead.When Alice pings everyone again to find out

whether they still agree with her Wednesday suggestion,

she gets mixed messages: Cathy claims to have settled on
Thursday with Dave, and Ben claims to have settled on
¢dzSaARI & G6AOK 5F@3Sd 51 3S OF yQ
is able to determine the order in which these

communications happened, and so none of Alice, Ben, and
Cathy know whether Tuesday or Thursday is the correct
choiceg

Distributed Data Management, SoSe 2015, S. Michel 10

http:// basho.conwhy-vector-clocksare-hard/

date =Tuesday

vclock= Alice:1, Ben:1

Wed
A

Allce

Now Dave and Ben start talking. Ben

A1,B1

suggests Tuesday:

G! t A0S .Sys /lFUuKeéeEX YR 51 @S

week for dinner. The planning starts with Alice suggesting
they meet on Wednesday. Later, Dave also exchanges email
with Ben, and they decide on Tuesday. Also, Dave discuss
alternatives with Cathy, and they decide on Thursday
instead.When Alice pings everyone again to find out
whether they still agree with her Wednesday suggestion,
she gets mixed messages: Cathy claims to have settled on
Thursday with Dave, and Ben claims to have settled on

Cathy

Dave

¢dzSaARI & G6AOK 5F@3Sd 51 3S OF yQ
Is able to determine the order in which these

communications happened, and so none of Alice, Ben, and
Cathy know whether Tuesday or Thursday is the correct
choiceg

Distributed Data Management, SoSe 2015, S. Michel 11

http:// basho.conwhy-vector-clocksare-hard/

date = Tuesday

vclock= Alice:1, Ben:1, Dave:

Allce

Dave replies, confirming Tuesday

A:1,8:1 G!' t A0S .Syzx /IUKéZ |yR 5F @S

: d week for dinner. The planning starts with Alice suggesting

: they meet on Wednesday. Later, Dave also exchanges email

with Ben, and they decide on Tuesday. Also, Dave discuss
alternatives with Cathy, and they decide on Thursday
instead.When Alice pings everyone again to find out
whether they still agree with her Wednesday suggestion,
she gets mixed messages: Cathy claims to have settled on
Thursday with Dave, and Ben claims to have settled on
¢dzSaARI & G6AOK 5F@3Sd 51 3S OF yQ
is able to determine the order in which these
communications happened, and so none of Alice, Ben, and
Cathy know whether Tuesday or Thursday is the correct
choiceg

Ben

Cathy

Tue
A01.8:1,00

Dave

Distributed Data Management, SoSe 2015, S. Michel 12
http:// basho.conwhy-vector-clocksare-hard/

date = Thursday

vclock= Alice:1, Cathy:1

Wed
&1

Allce

Now Cathy is suggesting Thursday

s a!' t A0S . Sys /LiKesZ FyR 51 @S
: week for dinner. The planning starts with Alice suggesting

they meet on Wednesday. Later, Dave also exchanges email

with Ben, and they decide on Tuesday. Also, Dave discuss

alternatives with Cathy, and they decide on Thursday

instead.When Alice pings everyone again to find out

_ : whether they still agree with her Wednesday suggestion,

 : [Thu -". she gets mixed messages: Cathy claims to have settled on

gt o Thursday with Dave, and Ben claims to have settled on

- - ¢dzSaARI & G6AOK 5F@3Sd 51 3S OF yQ

is able to determine the order in which these

communications happened, and so none of Alice, Ben, and

Cathy know whether Tuesday or Thursday is the correct

choiceg

Cathy

. - Tue)
v 1 A8 0 I“l

Distributed Data Management, SoSe 2015, S. Michel 13

Comparing Vector Clocks

A Dave has the following clocks:

date =Tuesday
vclock= Alice:1, Ben:1, Dave:1l

date =Thursday
vclock= Alice:1, Cathy:1

A Conflictbecause neither clocks descends from
the other.

Distributed Data Management, SoSe 2015, S. Michel 14

58S wSazf gSa
AX o0& OK2z22aAy3d ¢KdIzZNERI
date = Thursday

vclock= Alice:1, Ben:1, Cathy:1, Dave:

A New clock tells that it is successor of the two
previous clocks!

Distributed Data Management, SoSe 2015, S. Michel 15

date = Thursday

vclock= Alice:1, Ben:1, Cathy:1, Dave:

Allce

Tue

A1, BN

Thu

a0 -

: Tue . Thu
" At B0 D oA B S D2

Distributed Data Management, SoSe 2015, S. Michel

16

Ben informed Alice about Tuesday, Dave
informs Cathy and Alice about Thursday.
That means, Alice gets two different

wed| proposals! A problem?

A
Allce e)
. Tue
. = AL BN
Ben - L 1
» - [Thu
S e - ; :
Ccathy ——— A : i
. . Tue W, Thu
* ' &840 oA B LG, D

Dave

Distributed Data Management, SoSe 2015, S. Michel
http:// basho.conwhy-vector-clocksare-hard/

Again Conflict?

A Alice gets from Ben

date =Tuesday

vclock= Alice:1, Ben:1, Dave:l

A and from Cathy

date = Thursday

vclock= Alice:1, Ben:1, Cathy:1, Dave:2

AConflict? No/ F 1 K& Qa Of 2071 A«

Distributed Data Management, SoSe 2015, S. Michel 18

And we are Done

Wed | " fresohve) Thu |
LAl | AcB D2
Allce - i
Tue
= LALEN
Ben e - .
L TR : . .
S S T : Lo
Cathy ———Y — : i L
. . Tue ") Thu g
. CoLA 8,00 oA BN G DR .
Dave ¥ L =S L
Distributed Data Management, SoSe 2015, S. Michel 19

http:// basho.conwhy-vector-clocksare-hard/

Conflicts and Their Resolution

A Assume two or more conflicting versions of the
same object/item.

A What can the database do?

I Limited possibilities since application logic is not
1ly26yod 903 Gl 1S Yzal

A What can client software do?
I Fullfledged resolution, since app logic is known.

Distributed Data Management, SoSe 2015, S. Michel 20

Conflict ResolutionExample
Wcarl

ATypical use case at Amazon

AMultiple versions oshopping cart
I mergedby a union otheir contents

I what can go wrong? might put back a
deleted item (but you wont miss any
items=>doi®loose money)

Al SGQa asSsS Kzg 2V
Ydzf GALX S OSNREAZY

Distributed Data Management, SoSe 2015, S. Michel 21

S
a

Riak

A Key/Value store e e k
A With namespaces (buckets) AN rl a
A Queries:

I CRUD (create, retrieve, update, delete)
I MapReduce

I RiakSearch (i.e., full text search engine)
I Support of secondary indices

http://basho.com/riak/

Distributed Data Management, SoSe 2015, S. Michel 22

RiakArchitecture

A Set of equal nodes (no master)

A Placement of data: consistent hashing (will
see l|ater)

A Replication (default: 3 per object)
A Fault tolerant

A Various different setups (choices) for
consistency: R, W, number of copies, etc.

http:// docs.basho.conriak/1.2.1/references/appendices/concepts/Eventual
Consistency/

Riak Parameters Last Write Wins and
Allow Multiple Versions

A multiple versions = false
i[F&ad gNARGS dgAya I Flfas
to objects and TAs for conflict resolution
I Last write wins = true: then just consider last write.

A multiple versions = true

I Last write wins = false: then retain even concurrent
writes, client (application) has to resolve

i[Fad gNAROGS éAya I {NHSY
O0SKI OAZ2NXDPOD

See: http//docs.basho.com/riak/2.0.1/dev/using/confliatesolution/
Distributed Data Management, SoSe 2015, S. Michel 24

APl GET

A curl-v http://127.0.0.1:8098/riaktest/ doc

A Response: HTTP1 2000K
A Plus: Content of the document

A But could also end up with
AHTTPL.1 300Multiple ChoiceX
At f dza 'y I YVdzZYOSNI 2F O

http://docs.basho.com/riak/1.2.1/references/apisttp/ HT TPFetchObject/

Distributed Data Management, SoSe 2015, S. Michel 25

http://127.0.0.1:8098/riak/test/doc

Riak Siblingg Different Versions

Siblings
16vic4eU9ny4604KPiDz1f
4v5x0g4bVwUY ZdMkqfOd6l

onr5tDTMhxnwuAFJIDd2s6G
6zRSZFUJIHXZ1509CGOBYI

http://docs.basho.com/riak/1.2.1/references/apisttp/ HT TPFetchObject/

Riak GetSpecific Version

A curl-v
http://127.0.0.1:8098/riaktest/ docAtag=16vic
4eU9ny4604KPIDz1f

Distributed Data Management, SoSe 2015, S. Michel 27

GetALL Versions

curl-v http://127.0.0.1:8098fiak/test/ doc-H"Accept:
multipart/ mixed"

--YInLMzyUR9feB170kMytgKsyl¥tontent Type
applicatiordjsonLink </riak/test>; rel="up" Etag
enr5tD TmhxnwuAFJDd2st@stModified: Wed,
10Mar 2010 17:58:0&8MT{"bar":"baz'}

--YInLMzyUR9feB17o0kMytgKsyl¥tontentType
applicatiodjsonLink </riak/test>; rel="up" Etag
6zRSZFUJIHXZ1509CGDh&stModified: Wed, 10
Mar 2010 17:55:0%MT{"foo":"bar"}

Comments

A Gives good overview of what it takes to work
with Riak Particularly in terms of managing
conflicting (multiple) versions.

A https:// github.com/basho/riakjava-client

A Next to vector clocks Riak supports also
dotted version vectors

More details on conflict resolution in a more recent versiomRatk
http://docs.basho.com/riak/2.0.1/dev/using/confliatesolution/

https://github.com/basho/riak-java-client
http://docs.basho.com/riak/2.0.1/dev/using/conflict-resolution/

Recap: Configurations

R/W Configuration Kind of Consistency

W=Nand R=1 Read optimized strong
consistency.
W=1 and R=N Write optimized strong

consistency.

W+R<=N Eventualkonsistency. Read migh
mISS recent writes.

W+R>N Strong consistencyread will see
at least one most recent write.

Consistency Levels

A Is there something between the extreme
O2Y FAIdzNI GA2Yya GdalNRY
aSOSyidzrf Oz2yaraisSyoe

A Consider a client is working with a key value
store

Recap: Distributed Setup

A N copies per record/object, spread across serve

ﬁ ﬁ node4 i
nodel node?

Client

Distributed Data Management, SoSe 2015, S. Michel 32

ClientCentric Consistency
and SeenWrites

ClientCentric Consistenc\provides guarantees
for a single client concerning the consistency of
the accesses to a data store by that client.

A client reading a value for a key Is seeing a sub:
of the writes to this key; given the past history of
writes by itself and other clients.

Distributed Data Management, SoSe 2015, S. Michel 33

ClientCentric Read Consistency

Guarantees

Guarantee Explanation

Strong Consistency
Eventual Consistency

Consistent Prefix

Bounded Staleness

Monotonic Reads
Read My Writes

See all previous writes.

See (any) subset of previous
writes.

See Iinitial sequence of writes.
{SS |ff &2t RE
everything older than 10
minutes.

See increasing subset of writes

See all writes performed by
reader.

Distributed Data Management, SoSe 2015, S. Michel 34

Causal Consistency &u;
Al 2yaAraitacSyoOe Aaa sz%

® hdzNJ R23FT [/ KI NI ASZ NI

M o are afraid he got overrun by a cér!

Alice
Posted at 9:30am

% Thank God! | lad to h ho
Lq an Od: 1 am SO gia o hear t
> 4

Bob
Posted at 10:20am

Distributed Data Management, SoSe 2015, S. Michel 35

Causal ConS|stency (Z)ku;
Al 2g A0 &I a dzLJLJ2 a SJ

9 hdzNJ R23I3 [/ KFNIASE NI

M\ are afraid he got overrun by a cér!

Alice
Posted at 9:30am

8 Charlieis back!! We arsoooohappy!

Alice
Posted atl0:00am

‘%’2 Thank God! | am so glad to hear tho

Bob
Posted at 10:20am

Distributed Data Management, SoSe 2015, S. Michel 36

Consistency Model

A Contract between processes and data store,
specifying how processes interact with data
store, and what can then be said about the way
It works

Consistency Models

A In the following we use the notation:

I Wi(x)adescribes that procegswrites to data item X
with value a.

I R(x)bdescribes that processeads from data item
x and finds value b there.

Sequential Consistency

A Result of any execution is the sanas ifthe operations
by all processes (nodes) on the data store

A The operations of each individual process appear in this
sequence in the order specified by its program.

P1:
P2:
P3:
P4:

P1:
P2:
P3:
P4

W(x)a

A sequentially consistent

W(x)b

data store

R(X)b

R(x)a

R(x)b R(x)a

W(x)a

W(x)b

R(X)b

A data store that is not
sequentially consistent

R(x)a
R(X)a R(x)b

Causal Consistency

A Writes that are potentiallyausally relatedmust
be seen byall processes in the same order
Concurrentwrites may be seen indifferent
order on different machines

P1l: W(X)a W(x)c

P2: R(x)aW(x)b

P3: R(xX)a R(X)c R(x)b
PA4. R(X)a R(X)b R(X)c

This is allowed in a causaflgnsistent store.

Notation: _ o _ _
\W,(x)adescribes that procegawrites to data item x with value a.

R(x)bdescribes that procedseads from data item x and finds value b there.

Distributed Data Management, SoSe 2015, S. Michel 40

Causal Consistency Example

This isnot validin a
causallyconsistent data
store.

This isvalid in a causally
consistent data store.

Notation: _ o _ _
Wi(x)adescribes that procedswrites to data item x with value a.

R(x)b describes that procedseads from data item x and finds value b there.
Distributed Data Management, SoSe 2015, S. Michel 41

Causal Consistency Properties

A Strongest consistency model that is still
G G AflofSé Ay LINBasSyo

Partition 2

Distributed Data Management, SoSe 2015, S. Michel 42

Implementing Causal Consistency

A Need to keep track of dependencies

A Dependency grapheeds to be constructed and
maintained.

A For instance using vector clocks!

The paper below presents an approach that implements causal consistency on top of &
eventually consistent data store. It gives also a nice overview of eventual and causal
consistency, individually.

PeterBailis AliGhodsj Joseph MHellerstein lonStoica Bolton causal consistency.
SIGMOD Conferen&@913.

Distributed Data Management, SoSe 2015, S. Michel 43

DATA PLACEMENT: CONSISTENT
HASHING

Overview

In the following we will address these guestions:

A How is data assigned to machines?
A Where are replicas placed?

A How to reliably get them synced in presence of
node failures?

Distributed Data Management, SoSe 2015, S. Michel 45

HashBased Data Placement

A Use of standardhash functionf to place data
to machines

I m machines, placement based on f(key)

i e.g.f(key) := U*key + C mod m

A Does this work? What are the pros and cons?

Distributed Data Management, SoSe 2015, S. Michel 46

Problem:Moving DataAround when
Adding/Removing Machines
A Assumalata: [13, 34, 11, P
A Function: f(k):=17*k mod m

m=4 machines i m=5 machines
[13, 9] [13]
34 [11]
[11] [34, 9]

Distributed Data Management, SoSe 2015, S. Mic

47

Wish Listor Hashing Properties

local data movementf machines are
I added or
I removed

A Load balancingbut strong machines can get
larger shareof data/work

Distributed Data Management, SoSe 2015, S. Michel 48

ConsistentHashing:
Cyclic Identifier Space

N\
/

Distributed Data Management, SoSe 2015, S. Michel

N

49

Place Servers on Ring

Servers are hashed, b
standard hash functior
(e.qg., based on MAC
address) to the cyclic
Identifier space.

Distributed Data Management, SoSe 2015, S. Michel 50

Place Data to Servers

Also the data keys ar
hashed to the same
identifier space.
Then assigned to no
with smallest idarger
than id of key.

Distributed Data Management, SoSe 2015, S. Michel 51

Added Server (id 20)

Server with id 20 i1s
added. We can see
there is only little
(local') reorganizatior
required.

Distributed Data Management, SoSe 2015, S. Michel 52

Removed Server (id 55)

Server with id 55 is
deleted. Again, only
little (local!) re
organization required

33
J

o

Distributed Data Management, SoSe 2015, S. Michel 53

43
45

Consistent Hashing: Formal Definition
A Given a set of itembkand a set obucketsB

A Aview V is anysubsetof B
AA is given asf: 2x|->B

Af(V, i) is bucket to which itemis mapped (in
view V)

b20S GKFI GKS 2NAIAYI

aSUOGAY3Id C2NJ dza =
put data on.

*Kargeret al.: Consistentlashing and Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web. ST@8Z.Section 4.

Distributed Data Management, SoSe 2015, S. Michel 54

ConsistenHashingFormal Propertie:

A Balance with high probability, eachbucket
gets @I|/| V|) items assigned

Means:buckets get roughly the same load in terms of
number of items assigned

Note thatstandard hash functions fulfill this
criterion usually easily.

Distributed Data Management, SoSe 2015, S. Michel 55

Consistent Hashing: Formal Propert

A Monotonicity: Given views/,, V., with
V,subsetOfV,

Thenf(V,1) InV, implies f(V 1)==(V,I)

Means:if a new bucket (node) is added, an item might

move from an old bucket to a new one, but never from an
old one to another old one.

This is actually thpart about consistency of

G/ 2y ahiai S ywhenthe setofayaitable
buckets (nodes) changes&ms should only move if
necessary (to preserve an even distribution)

Distributed Data Management, SoSe 2015, S. Michel 56

Balance and Monotonicity Fulfilled”

Distributed Data Management, SoSe 2015, S. Michel 57

Consistent Hashing: Implementatio

AGiven two random hash Both data and
uckets (servers) are
functions: mapped to the same

I rymaps V to the unit interval
I rgmaps B to the unit interval

AThen
I f(V,I) should map itemto
bucket b that minimizes

| rv(1)-Tg(b)]

I This is the formal def. dyargeret al. In Chord
(Stoicaet al.) and in this lecture, we assign a key t
the node with smallest id larger than id of the k

Distributed Data Management, SoSe 2015, S. Michel 58

Virtual Nodes

A The depictechodes do not necessarily
correspond to physical machines

A Instead: Machines can have represent several
nodes in the system.

A That waystronger machines can get a larger
share of the loadhan weak machines.

Distributed Data Management, SoSe 2015, S. Michel 59

Used In

ANoSQr & aiSya fA1S Rigk [2

A Chord adistributed hashtable(on top of which
P2P applications can be built), important here:
self organization (no central control)

lon Stoica Robert Morris, David Rarger M. FransKaashoekHari BalakrishnanChord: A
scalable peeto-peer lookup service for internet applications. SIGCOMM 200114@9

Routing in a Consistent Hashing
a{ 0 NHzO U dzNE ¢
A A client does not know specific server that is
responsible for key, but some (any) other server

A Naive routing:
I Each node knows its neighbor s

ﬂ!’ p1a

I Send message to nearest neighb

I Getting closer to target node
with each hop

I But O(n) cost!

p21

2p38 3 : jﬂ

Distributed Data Management, SoSe 2015, S. Michel 62

Routing with Logarithmic Cost

A Eachnode keeps a ﬁ \‘

lookup table(also

-
Ca”ed flnger table) key(this)+1 192.168.434.12
A At exponentially key(this)+2 X
increasing distances Yo
key(this)+8

A Periodically refreshed keytnis)+1s
A ROUting N O('Og(n)) key(this)+32

X

Distributed Data Management, SoSe 2015, S. Michel 63

Finger Table Routing Exam

fingertable

fingertable
Ps

le

fingertable
Pa2

Lookup(54

Distributed Data Management, SoSe 2015, S. Michel

64

Node Joining Ring (1)

Distributed Data Management, SoSe 2015, S. Michel

65

Node Joining Ring (2)

Ps2 lookup(42)

P3s

Distributed Data Management, SoSe 2015, S. Michel

66

Node Joining Ring (3)

P42 lookup(42)

/ Pag P42 Sets succ pointer

Ky P2
k40
k39

Distributed Data Management, SoSe 2015, S. Michel

67

