
Distributed Data Management
Summer Semester 2015

TU Kaiserslautern

Prof. Dr.-Ing. Sebastian Michel

Databases and Information Systems
Group (AG DBIS)

http://dbis.informatik.uni-kl.de/

Distributed Data Management, SoSe 2015, S. Michel 1

Announcements

ÅDoodle link for exam registration posted

ÅJust place your name ONCE (the IRDM lecture has
its own Doodle). Write down date/time before
clicking the save button.

ÅFirst-come, first-served.

ÅRead instructions on website.

ÅExam dates are on 30., 31. July and 3., 4., 5., 6.
August

ÅRe-exams in late September / early October.

ÅMore exam dates possible in beginning of 2016.

Distributed Data Management, SoSe 2015, S. Michel 2

Announcements (2)

ÅQuestion & Answer Session roughly 1 week before
exams start; in the exercise slot and room.

ÅIf you want to do the exam in German, send an
email to Heike Neu (neu@cs.uni-kl.de) stating so.

Å¢ƘŜ ŘŜǇŀǊǘƳŜƴǘΩǎ ƭŜŎǘǳǊŜ ŜǾŀƭǳŀǘƛƻƴ Ƙŀǎ ǎǘŀǊǘŜŘΦ
Please participate and give feedback!

ÅYou can also win something. More info under
https://vlu.cs.uni-kl.de/

Distributed Data Management, SoSe 2015, S. Michel 3

https://vlu.cs.uni-kl.de/

Road Map

ÅThis lecture today will consider NoSQLSystems
with consistency models and how and where
to place the data (replicas)

ÅWe will be done latest next lecture with this
content.

ÅThen, we will look at (distributed) data streams;
roughly two lectures.

ÅThen, we will look at Cloud Computing; one
lecture.

ÅThen, still open, one lecture.

Distributed Data Management, SoSe 2015, S. Michel 4

Vector Clocks

ÅIdea: each node gets separate counter

ÅBy C. Fidgeand F. Mattern in 1988 (independently)

ÅVector clock: Vector of counters

[c0, c1Σ ΧΣ cn] ci is counter for node i

Initialization: all ci are zero: [c0, c1Σ ΧΣ cn]

Upon event at local event at node i: node increments
ci in its vector.

Sendingclock: node i increments ci and sends vector

Distributed Data Management, SoSe 2015, S. Michel 5

Vector Clocks: Merging upon Receive

ÅWhen node i receives clock of other node

ïnode i merges its vector clock VC with the received
one VCother

ïas follows:

increment own counter ci, i.e., VC[i]=VC[i]+1

for each j do

VC[j] = max(VC[j], VCother[j])

end

Distributed Data Management, SoSe 2015, S. Michel 6

Distributed Data Management, SoSe 2015, S. Michel 7

tim
e

b [2,0,0]

a [1,0,0]

d [4,0,3]

l [0,1,0]

m [1,2,0]

c [3,0,0] n [1,3,2]

o [1,4,2]

p [3,5,2]

q [3,6,2]

v [0,0,1]

w [0,0,2]

x [0,0,3]

y [0,0,4]

z [1,4,5]

Process 1 Process 2 Process 3

ComparingTwo Vector Clocks

ÅVC1 = VC2,

iff VC1[i] = VC2[i], for all i = 1, é , n

ÅVC1ÒVC2,

iff VC1[i] Ò VC2[i], for all i = 1, é , n

ÅVC1 < VC2,

iff VC1Ò VC2 &

$j (1 Ò j Ò n & VC1[j] < VC2 [j])

ÅVC1 is concurrent with VC2

iff (not VC1Ò VC2 AND not VC2Ò VC1)

Distributed Data Management, SoSe 2015, S. Michel 8

Example Story

Åά!ƭƛŎŜ, Ben, Cathy, and Dave are planning to meet next week
for dinner. The planning starts with Alice suggesting they meet
on Wednesday. Later, Dave also exchanges email with Ben,
and they decide on Tuesday. Also, Dave discuss alternatives
with Cathy, and they decide on Thursday instead. When Alice
pings everyone again to find out whether they still agree with
her Wednesday suggestion, she gets mixed messages: Cathy
claims to have settled on Thursday with Dave, and Ben claims
ǘƻ ƘŀǾŜ ǎŜǘǘƭŜŘ ƻƴ ¢ǳŜǎŘŀȅ ǿƛǘƘ 5ŀǾŜΦ 5ŀǾŜ ŎŀƴΩǘ be reached,
and so no one is able to determine the order in which these
communications happened, and so none of Alice, Ben, and
Cathy know whether Tuesday or Thursday is the correct
choice.έ

Distributed Data Management, SoSe 2015, S. Michel 9

source: http://basho.com/why-vector-clocks-are-easy/

http://basho.com/why-vector-clocks-are-easy/

Distributed Data Management, SoSe 2015, S. Michel 10

date = Wednesday
vclock= Alice:1

http:// basho.com/why-vector-clocks-are-hard/

ά!ƭƛŎŜΣ .ŜƴΣ /ŀǘƘȅΣ ŀƴŘ 5ŀǾŜ ŀǊŜ ǇƭŀƴƴƛƴƎ ǘƻ ƳŜŜǘ ƴŜȄǘ
week for dinner. The planning starts with Alice suggesting
they meet on Wednesday. Later, Dave also exchanges email
with Ben, and they decide on Tuesday. Also, Dave discuss
alternatives with Cathy, and they decide on Thursday
instead. When Alice pings everyone again to find out
whether they still agree with her Wednesday suggestion,
she gets mixed messages: Cathy claims to have settled on
Thursday with Dave, and Ben claims to have settled on
¢ǳŜǎŘŀȅ ǿƛǘƘ 5ŀǾŜΦ 5ŀǾŜ ŎŀƴΩǘ ōŜ ǊŜŀŎƘŜŘΣ ŀƴŘ ǎƻ ƴƻ ƻƴŜ
is able to determine the order in which these
communications happened, and so none of Alice, Ben, and
Cathy know whether Tuesday or Thursday is the correct
choice.έ

Start with Aliceôs initialmessage

Distributed Data Management, SoSe 2015, S. Michel 11

date = Tuesday
vclock= Alice:1, Ben:1

http:// basho.com/why-vector-clocks-are-hard/

Now Dave and Ben start talking. Ben

suggests Tuesday:

ά!ƭƛŎŜΣ .ŜƴΣ /ŀǘƘȅΣ ŀƴŘ 5ŀǾŜ ŀǊŜ ǇƭŀƴƴƛƴƎ ǘƻ ƳŜŜǘ ƴŜȄǘ
week for dinner. The planning starts with Alice suggesting
they meet on Wednesday. Later, Dave also exchanges email
with Ben, and they decide on Tuesday. Also, Dave discuss
alternatives with Cathy, and they decide on Thursday
instead. When Alice pings everyone again to find out
whether they still agree with her Wednesday suggestion,
she gets mixed messages: Cathy claims to have settled on
Thursday with Dave, and Ben claims to have settled on
¢ǳŜǎŘŀȅ ǿƛǘƘ 5ŀǾŜΦ 5ŀǾŜ ŎŀƴΩǘ ōŜ ǊŜŀŎƘŜŘΣ ŀƴŘ ǎƻ ƴƻ ƻƴŜ
is able to determine the order in which these
communications happened, and so none of Alice, Ben, and
Cathy know whether Tuesday or Thursday is the correct
choice.έ

Distributed Data Management, SoSe 2015, S. Michel 12

date= Tuesday
vclock= Alice:1, Ben:1, Dave:1

http:// basho.com/why-vector-clocks-are-hard/

Dave replies, confirming Tuesday

ά!ƭƛŎŜΣ .ŜƴΣ /ŀǘƘȅΣ ŀƴŘ 5ŀǾŜ ŀǊŜ ǇƭŀƴƴƛƴƎ ǘƻ ƳŜŜǘ ƴŜȄǘ
week for dinner. The planning starts with Alice suggesting
they meet on Wednesday. Later, Dave also exchanges email
with Ben, and they decide on Tuesday. Also, Dave discuss
alternatives with Cathy, and they decide on Thursday
instead. When Alice pings everyone again to find out
whether they still agree with her Wednesday suggestion,
she gets mixed messages: Cathy claims to have settled on
Thursday with Dave, and Ben claims to have settled on
¢ǳŜǎŘŀȅ ǿƛǘƘ 5ŀǾŜΦ 5ŀǾŜ ŎŀƴΩǘ ōŜ ǊŜŀŎƘŜŘΣ ŀƴŘ ǎƻ ƴƻ ƻƴŜ
is able to determine the order in which these
communications happened, and so none of Alice, Ben, and
Cathy know whether Tuesday or Thursday is the correct
choice.έ

Distributed Data Management, SoSe 2015, S. Michel 13

date = Thursday
vclock= Alice:1, Cathy:1

Now Cathy is suggesting Thursday

ά!ƭƛŎŜΣ .ŜƴΣ /ŀǘƘȅΣ ŀƴŘ 5ŀǾŜ ŀǊŜ ǇƭŀƴƴƛƴƎ ǘƻ ƳŜŜǘ ƴŜȄǘ
week for dinner. The planning starts with Alice suggesting
they meet on Wednesday. Later, Dave also exchanges email
with Ben, and they decide on Tuesday. Also, Dave discuss
alternatives with Cathy, and they decide on Thursday
instead. When Alice pings everyone again to find out
whether they still agree with her Wednesday suggestion,
she gets mixed messages: Cathy claims to have settled on
Thursday with Dave, and Ben claims to have settled on
¢ǳŜǎŘŀȅ ǿƛǘƘ 5ŀǾŜΦ 5ŀǾŜ ŎŀƴΩǘ ōŜ ǊŜŀŎƘŜŘΣ ŀƴŘ ǎƻ ƴƻ ƻƴŜ
is able to determine the order in which these
communications happened, and so none of Alice, Ben, and
Cathy know whether Tuesday or Thursday is the correct
choice.έ

Comparing Vector Clocks

ÅDave has the following clocks:

ÅConflictbecause neither clocks descends from
the other.

Distributed Data Management, SoSe 2015, S. Michel 14

date= Tuesday
vclock= Alice:1, Ben:1, Dave:1

date = Thursday
vclock= Alice:1, Cathy:1

5ŀǾŜ wŜǎƻƭǾŜǎ /ƻƴŦƭƛŎǘ Χ

ÅΧ ōȅ ŎƘƻƻǎƛƴƎ ¢ƘǳǊǎŘŀȅ

ÅNew clock tells that it is successor of the two
previous clocks!

Distributed Data Management, SoSe 2015, S. Michel 15

date = Thursday
vclock= Alice:1, Ben:1, Cathy:1, Dave:2

Distributed Data Management, SoSe 2015, S. Michel 16

date = Thursday
vclock= Alice:1, Ben:1, Cathy:1, Dave:2

Distributed Data Management, SoSe 2015, S. Michel 17
http:// basho.com/why-vector-clocks-are-hard/

Ben informed Alice about Tuesday, Dave

informs Cathy and Alice about Thursday.

That means, Alice gets two different

proposals! A problem?

Again Conflict?

ÅAlice gets from Ben

Åand from Cathy

ÅConflict? No. /ŀǘƘȅΩǎ ŎƭƻŎƪ ƛǎ ǎǳŎŎŜǎǎƻǊ ƻŦ .ŜƴΩǎ

Distributed Data Management, SoSe 2015, S. Michel 18

date = Tuesday
vclock= Alice:1, Ben:1, Dave:1

date = Thursday
vclock= Alice:1, Ben:1, Cathy:1, Dave:2

And we are Done

Distributed Data Management, SoSe 2015, S. Michel 19
http:// basho.com/why-vector-clocks-are-hard/

Conflicts and Their Resolution

ÅAssume two or more conflicting versions of the
same object/item.

ÅWhat can the database do?

ïLimited possibilities since application logic is not
ƪƴƻǿƴΦ 9ΦƎΦΣ ǘŀƪŜ Ƴƻǎǘ άǊŜŎŜƴǘέ ƻƴŜ

ÅWhat can client software do?

ïFull-fledged resolution, since app logic is known.

Distributed Data Management, SoSe 2015, S. Michel 20

Conflict Resolution: Example

ÅTypical use case at Amazon

ÅMultiple versions of shopping cart
ïmerged by a union of their contents

ïwhat can go wrong? might put back a
deleted item (but you wont miss any
items=>donΩt loose money)

Å[ŜǘΩǎ ǎŜŜ Ƙƻǿ ƻƴŜ ǿƻǳƭŘ ǿƻǊƪ ǿƛǘƘ
ƳǳƭǘƛǇƭŜ ǾŜǊǎƛƻƴǎ ƛƴ ŀ ǊŜŀƭ ǎȅǎǘŜƳ ΧΦ

Distributed Data Management, SoSe 2015, S. Michel 21

Riak

ÅKey/Value store

ÅWith namespaces (buckets)

ÅQueries:

ïCRUD (create, retrieve, update, delete)

ïMapReduce

ïRiakSearch (i.e., full text search engine)

ïSupport of secondary indices

Distributed Data Management, SoSe 2015, S. Michel 22

http://basho.com/riak/

RiakArchitecture

ÅSet of equal nodes (no master)

ÅPlacement of data: consistent hashing (will
see later)

ÅReplication (default: 3 per object)

ÅFault tolerant

ÅVarious different setups (choices) for
consistency: R, W, number of copies, etc.

Distributed Data Management, SoSe 2015, S. Michel 23

http:// docs.basho.com/riak/1.2.1/references/appendices/concepts/Eventual-
Consistency/

Riak: Parameters Last Write Wins and
Allow Multiple Versions

Åmultiple versions = false

ï[ŀǎǘ ǿǊƛǘŜ ǿƛƴǎ Ґ ŦŀƭǎŜΥ ǘƘŜƴ ǳǎŜ άǘƛƳŜέ ŀƴƴƻǘŀǘƛƻƴǎ
to objects and TAs for conflict resolution

ïLast write wins = true: then just consider last write.

Åmultiple versions = true

ïLast write wins = false: then retain even concurrent
writes, client (application) has to resolve

ï[ŀǎǘ ǿǊƛǘŜ ǿƛƴǎ Ґ ǘǊǳŜΥ 5ƻƴΩǘ Řƻ ǘƘƛǎΣ ǳƴǇǊŜŘƛŎǘŀōƭŜ
ōŜƘŀǾƛƻǊΧΦΦ

Distributed Data Management, SoSe 2015, S. Michel 24

See: http://docs.basho.com/riak/2.0.1/dev/using/conflict-resolution/

API: GET

Åcurl -v http://127.0.0.1:8098/riak/test/ doc

ÅResponse: HTTP/1.1 200 OK

ÅPlus: Content of the document

ÅBut could also end up with

ÅHTTP/1.1 300 Multiple Choices Χ

ÅtƭǳǎΥ ŀ ƴǳƳōŜǊ ƻŦ ǾŜǊǎƛƻƴǎ Χ

Distributed Data Management, SoSe 2015, S. Michel 25

http://docs.basho.com/riak/1.2.1/references/apis/http/HTTP-Fetch-Object/

http://127.0.0.1:8098/riak/test/doc

Riak: Siblings ςDifferent Versions

Siblings:

16vic4eU9ny46o4KPiDz1f
4v5xOg4bVwUYZdMkqf0d6I
6nr5tDTmhxnwuAFJDd2s6G
6zRSZFUJlHXZ15o9CG0BYl

Distributed Data Management, SoSe 2015, S. Michel 26

http://docs.basho.com/riak/1.2.1/references/apis/http/HTTP-Fetch-Object/

Riak: Get Specific Version

Åcurl -v
http://127.0.0.1:8098/riak/test/ doc?vtag=16vic
4eU9ny46o4KPiDz1f

Distributed Data Management, SoSe 2015, S. Michel 27

Get ALL Versions

--YinLMzyUR9feB17okMytgKsylvhContent-Type:
application/ jsonLink: </riak/test>; rel="up" Etag:
6nr5tDTmhxnwuAFJDd2s6GLast-Modified: Wed,
10 Mar 2010 17:58:08 GMT{"bar":"baz"}

--YinLMzyUR9feB17okMytgKsylvhContent-Type:
application/ jsonLink: </riak/test>; rel="up" Etag:
6zRSZFUJlHXZ15o9CG0BYlLast-Modified: Wed, 10
Mar 2010 17:55:03 GMT{"foo":"bar"}

.....
Distributed Data Management, SoSe 2015, S. Michel 28

curl -v http://127.0.0.1:8098/riak/test/ doc -H "Accept:
multipart/mixed"

Comments

ÅGives good overview of what it takes to work
with Riak. Particularly in terms of managing
conflicting (multiple) versions.

Åhttps:// github.com/basho/riak-java-client

ÅNext to vector clocks Riak supports also
dotted version vectors

Distributed Data Management, SoSe 2015, S. Michel 29

More details on conflict resolution in a more recent version of Riak:
http://docs.basho.com/riak/2.0.1/dev/using/conflict-resolution/

https://github.com/basho/riak-java-client
http://docs.basho.com/riak/2.0.1/dev/using/conflict-resolution/

Recap: Configurations

Distributed Data Management, SoSe 2015, S. Michel 30

R/W Configuration Kind of Consistency

W=Nand R=1 Read optimized strong
consistency.

W=1 and R=N Write optimized strong
consistency.

W+R<=N Eventualconsistency. Read might
miss recent writes.

W+R>N Strong consistency. Read will see
at least one most recent write.

Consistency Levels

ÅIs there something between the extreme
ŎƻƴŦƛƎǳǊŀǘƛƻƴǎ άǎǘǊƻƴƎ ŎƻƴǎƛǎǘŜƴŎȅέ ŀƴŘ
άŜǾŜƴǘǳŀƭ ŎƻƴǎƛǎǘŜƴŎȅέΚ

ÅConsider a client is working with a key value
store

Distributed Data Management, SoSe 2015, S. Michel 31

Recap: Distributed Setup
ÅN copies per record/object, spread across servers

Distributed Data Management, SoSe 2015, S. Michel 32

node1 node2

node3

node4

ƴƻŘŜ ΧƴƻŘŜΧ

Client

Client-Centric Consistency
and Seen Writes

A client reading a value for a key is seeing a subset
of the writes to this key; given the past history of
writes by itself and other clients.

Distributed Data Management, SoSe 2015, S. Michel 33

Client-Centric Consistency: provides guarantees
for a single client concerning the consistency of
the accesses to a data store by that client.

Client-Centric Read Consistency
Guarantees

Distributed Data Management, SoSe 2015, S. Michel 34

Guarantee Explanation

Strong Consistency See all previous writes.

Eventual Consistency See (any) subset of previous
writes.

Consistent Prefix See initial sequence of writes.

Bounded Staleness {ŜŜ ŀƭƭ άƻƭŘέ ǿǊƛǘŜǎΦ 9ΦƎΦΣ
everything older than 10
minutes.

Monotonic Reads See increasing subset of writes.

Read My Writes See all writes performed by
reader.

Causal Consistency
Å/ƻƴǎƛǎǘŜƴŎȅ ƛǎǎǳŜǎΧΦ

Distributed Data Management, SoSe 2015, S. Michel 35

hǳǊ ŘƻƎΣ /ƘŀǊƭƛŜΣ Ǌŀƴ ŀǿŀȅ ǘƻŘŀȅΦ /ŀƴΩǘ ŦƛƴŘ ƘƛƳΣ
we are afraid he got overrun by a car! L

Thank God! I am so glad to hear this!

Posted at 9:30am

Posted at 10:20am

Alice

Bob

Causal Consistency (2)
ÅIƻǿ ƛǘ ǿŀǎ ǎǳǇǇƻǎŜŘ ǘƻ ŀǇǇŜŀǊΧΦ

Distributed Data Management, SoSe 2015, S. Michel 36

hǳǊ ŘƻƎΣ /ƘŀǊƭƛŜΣ Ǌŀƴ ŀǿŀȅ ǘƻŘŀȅΦ /ŀƴΩǘ ŦƛƴŘ ƘƛƳΣ
we are afraid he got overrun by a car! L

Charlieis back!! We are soooohappy!

Thank God! I am so glad to hear this!

Posted at 9:30am

Posted at 10:20am

Posted at 10:00am

Alice

Alice

Bob

Consistency Model

ÅContract between processes and data store,
specifying how processes interact with data
store, and what can then be said about the way
it works

Distributed Data Management, SoSe 2015, S. Michel 37

Consistency Models

ÅIn the following we use the notation:

ïWi(x)adescribes that process i writes to data item x
with value a.

ïRi(x)bdescribes that process i reads from data item
x and finds value b there.

Distributed Data Management, SoSe 2015, S. Michel 38

Sequential Consistency
ÅResult of any execution is the same as if the operations

by all processes (nodes) on the data store were executed
in some specific sequential order.

ÅThe operations of each individual process appear in this
sequence in the order specified by its program.

Distributed Data Management, SoSe 2015, S. Michel 39

P1:

P2:

P3:

P4:

W(x)a

W(x)b

R(x)b

R(x)b

R(x)a

R(x)a

P1:

P2:

P3:

P4:

W(x)a

W(x)b

R(x)b

R(x)a

R(x)a

R(x)b

A sequentially consistent
data store

A data store that is not
sequentially consistent

Causal Consistency
ÅWrites that are potentially causally related must

be seen by all processes in the same order.
Concurrentwrites may be seen in a different
order on different machines.

Distributed Data Management, SoSe 2015, S. Michel 40

P1:

P2:

P3:

P4:

W(x)a

R(x)a W(x)b

R(x)c

R(x)b

R(x)a

R(x)a

W(x)c

R(x)b

R(x)c

This is allowed in a causally-consistent store.

Wi(x)adescribes that process i writes to data item x with value a.
Ri(x)bdescribes that process i reads from data item x and finds value b there.

Notation:

Causal Consistency Example

Distributed Data Management, SoSe 2015, S. Michel 41

P1:

P2:

P3:

P4:

W(x)a

R(x)a

R(x)a

R(x)b

P1:

P2:

P3:

P4:

W(x)a

R(x)a W(x)b

R(x)a

R(x)a

R(x)b

This isvalid in a causally-
consistent data store.

This is not valid in a
causally-consistent data
store.

W(x)b

R(x)b

R(x)b

Wi(x)adescribes that process i writes to data item x with value a.
Ri(x)bdescribes that process i reads from data item x and finds value b there.

Notation:

Causal Consistency Properties

ÅStrongest consistency model that is still
άŀǾŀƛƭŀōƭŜέ ƛƴ ǇǊŜǎŜƴŎŜ ƻŦ ƴŜǘǿƻǊƪ ǇŀǊǘƛǘƛƻƴǎΗ

Distributed Data Management, SoSe 2015, S. Michel 42

Partition 1 Partition 2

Implementing Causal Consistency

ÅNeed to keep track of dependencies

ÅDependency graph needs to be constructed and
maintained.

ÅFor instance using vector clocks!

Distributed Data Management, SoSe 2015, S. Michel 43

Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, Ion Stoica: Bolt-on causal consistency.
SIGMOD Conference 2013.

The paper below presents an approach that implements causal consistency on top of an
eventually consistent data store. It gives also a nice overview of eventual and causal
consistency, individually.

DATA PLACEMENT: CONSISTENT
HASHING

Distributed Data Management, SoSe 2015, S. Michel 44

Overview

In the following we will address these questions:

ÅHow is data assigned to machines?

ÅWhere are replicas placed?

ÅHow to reliably get them synced in presence of
node failures?

Distributed Data Management, SoSe 2015, S. Michel 45

Hash Based Data Placement

ÅUse of standard hash function f to place data
to machines

ïm machines, placement based on f(key)

ïe.g., f(key) := U*key + C mod m

ÅDoes this work? What are the pros and cons?

Distributed Data Management, SoSe 2015, S. Michel 46

Problem: Moving Data Around when
Adding/Removing Machines

ÅAssume data: [13, 34, 11, 9]

ÅFunction: f(k):=17*k mod m

Distributed Data Management, SoSe 2015, S. Michel 47

0

1

2

3

4

0

1

2

3

m=4 machines m=5 machines

[13, 9]

[34]

[11]

[13]

[34, 9]

[11]

Wish List for Hashing Properties

ÅOnlylocal data movement if machines are

ïadded or

ïremoved

ÅLoad balancing, but strong machines can get
larger shareof data/work

Distributed Data Management, SoSe 2015, S. Michel 48

Consistent-Hashing:
Cyclic Identifier Space

Distributed Data Management, SoSe 2015, S. Michel 49

064

Place Servers on Ring

Distributed Data Management, SoSe 2015, S. Michel 50

62

55

7

43

Servers are hashed, by
standard hash function
(e.g., based on MAC
address) to the cyclic
identifier space.

Place Data to Servers

Distributed Data Management, SoSe 2015, S. Michel 51

62

55

7

43

25

33

2

45

12

50

59

Also the data keys are
hashed to the same
identifier space.
Then assigned to node
with smallest idlarger
than id of key.

Added Server (id 20)

Distributed Data Management, SoSe 2015, S. Michel 52

62

55

7

43

25

33

2

45

12

50

59

20

Server with id 20 is
added. We can see
there is only little
(local!) re-organization
required.

Removed Server (id 55)

Distributed Data Management, SoSe 2015, S. Michel 53

62

55

7

43

25

33

2

45

12

50

59

20

Server with id 55 is
deleted. Again, only
little (local!) re-
organization required.

Consistent Hashing: Formal Definition
ÅGiven a set of items I and a set of bucketsB

ÅA view V is any subset of B

ÅA hash function is given as f: 2B x I -> B

Åf(V, i) is bucket to which item i is mapped (in
view V)

Distributed Data Management, SoSe 2015, S. Michel 54

*Kargeret al.: Consistent Hashing and Random Trees: Distributed Caching Protocols for
Relieving Hot Spots on the World Wide Web. STOC 1997. Section 4.

bƻǘŜ ǘƘŀǘ ǘƘŜ ƻǊƛƎƛƴŀƭ ǇŀǇŜǊϝ ǘŀƭƪǎ ŀōƻǳǘ ŎƭƛŜƴǘǎΩ ǾƛŜǿǎ ƻƴ ŎŀŎƘŜǎ ƛƴ ŀ ²Ŝō
ǎŜǘǘƛƴƎΦ CƻǊ ǳǎΣ ǿŜ Ŏŀƴ ǎŜŜ άǾƛŜǿǎέ ŀǎ ǘƘŜ ŀǾŀƛƭŀōƭŜ ǎŜǊǾŜǊǎ όōǳŎƪŜǘǎύ ǿŜ ǿŀƴǘ ǘƻ
put data on.

Consistent Hashing: Formal Properties

ÅBalance: with high probability, each bucket
gets O(| I|/| V|) items assigned

Note that standard hash functions fulfill this
criterion usually easily.

Distributed Data Management, SoSe 2015, S. Michel 55

Means: buckets get roughly the same load in terms of
number of items assigned

Consistent Hashing: Formal Properties
ÅMonotonicity: Given views V1, V2 with

V1 subsetOfV2

Then f(V2,i) in V1 implies f(V1, i)==f(V2,i)

This is actually the part about consistency of
ά/ƻƴǎƛǎǘŜƴǘ IŀǎƘƛƴƎέΦ When the set of available
buckets (nodes) changes, items should only move if
necessary (to preserve an even distribution)

Distributed Data Management, SoSe 2015, S. Michel 56

Means: if a new bucket (node) is added, an item might
move from an old bucket to a new one, but never from an
old one to another old one.

Balance and Monotonicity Fulfilled?

Distributed Data Management, SoSe 2015, S. Michel 57

62

55

7

43

25

33

2

45

12

50

59

Consistent Hashing: Implementation
ÅGiven two random hash

functions:

ïrV maps V to the unit interval

ïrBmaps B to the unit interval

ÅThen

ïf(V,i) should map item i to
bucket b that minimizes
| rV(i)-rB(b)|

ïThis is the formal def. by Kargeret al. In Chord
(Stoicaet al.) and in this lecture, we assign a key to
the node with smallest id larger than id of the key.

Distributed Data Management, SoSe 2015, S. Michel 58

Both data and
buckets (servers) are
mapped to the same

space.

Virtual Nodes

ÅThe depicted nodes do not necessarily
correspond to physical machines.

ÅInstead: Machines can have represent several
nodes in the system.

ÅThat way, stronger machines can get a larger
share of the load than weak machines.

Distributed Data Management, SoSe 2015, S. Michel 59

Used In

ÅNoSQLǎȅǎǘŜƳǎ ƭƛƪŜ !ƳŀȊƻƴΩǎ 5ȅƴŀƳƻΣ Riak

ÅChord, a distributed hashtable(on top of which
P2P applications can be built), important here:
self organization (no central control)

Distributed Data Management, SoSe 2015, S. Michel 60

Ion Stoica, Robert Morris, David R. Karger, M. FransKaashoek, HariBalakrishnan: Chord: A
scalable peer-to-peer lookup service for internet applications. SIGCOMM 2001: 149-160

Routing in a Consistent Hashing
ά{ǘǊǳŎǘǳǊŜέ

ÅA client does not know specific server that is
responsible for key, but some (any) other server

ÅNaïve routing:

ïEach node knows its neighbor

ïSend message to nearest neighbor

ïGetting closer to target node
with each hop

ïBut O(n) cost!

Distributed Data Management, SoSe 2015, S. Michel 62

Routing with Logarithmic Cost

ÅEach node keeps a
lookup table (also
called finger table)

ÅAt exponentially
increasing distances.

ÅPeriodically refreshed.

ÅRouting in O(log(n))

Distributed Data Management, SoSe 2015, S. Michel 63

Key Node

key(this)+1 192.168.434.12

key(this)+2 Χ

key(this)+4

key(this)+8

key(this)+16

key(this)+32

Χ

Finger Table Routing Example

Distributed Data Management, SoSe 2015, S. Michel 64

64

Chord Ring

p1

p8

p56

p51

p48

p42

p38 p32
p21

p14

p8 + 4

p8 + 8

p8 + 16

p8 + 2

p8 + 32

p8 + 1

p14

p21

p32

p14

p42

p14

fingertable
p8

p42 + 4

p42 + 8

p42 + 16

p42 + 2

p42 + 32

p42 + 1

p48

p51

p1

p48

p14

p48

fingertable
p42

p51 + 4

p51 + 8

p51 + 16

p51 + 2

p51 + 32

p51 + 1

p56

p1

p8

p56

p21

p56

fingertable
p51

k54

Lookup(54)

Node Joining Ring (1)

Distributed Data Management, SoSe 2015, S. Michel 65

p48

p42

k40

k43

k39

Node Joining Ring (2)

Distributed Data Management, SoSe 2015, S. Michel 66

p48

p38

p42

k40

k43

k39

p42 lookup(42)

Node Joining Ring (3)

Distributed Data Management, SoSe 2015, S. Michel 67

p48

p38

p42

k40

k43

k39

p42 lookup(42)

sets succ pointerp42

