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PIG AND HIVE
TWO HIGHER-LEVEL APPROACHES TO PROCESS DATA WITH MAPREDUCE
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MapReduce
•Remember slides on pros and cons of 

MapReduce, particularly criticism (too low level, 
…)

•We have seen how to code joins in MR

•How to filter (grep!), group by, …

•Now: look at higher-level ”tools” on top of 
MapReduce

•Why? Claim: MapReduce too low level for 
“normal” users (developers) + large effort for ad-
hoc queries.
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Pig & Pig Latin

•High-level tool for expressing data analysis 
programs, originated from Yahoo (now at 
Apache)

•Compiler transforms query into sequence of 
MapReduce jobs

•Data Flow language, Pig Latin (not really 
something like SQL)

•http://pig.apache.org
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Gates et al. Building a HighLevel Dataflow System on top of MapReduce: The Pig 
Experience. PVLDB 2(2): 1414-1425 (2009)

http://pig.apache.org


Relation Pig and Hadoop
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Hadoop
MapReduce

A = LOAD 'input' AS (x, y, z); 

B = FILTER A BY x > 5; 

STORE B INTO 'output'; 

Pig Latin Commands:

Parsing, logical optimization.

Creation of MapReduce jobs 
+ running them.



Example
Input, e.g., using Shell:

Commands like:

A = LOAD 'input' AS (x, y, z); 

B = FILTER A BY x > 5; 

STORE B INTO 'output'; 
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grunt> …. 

Pig operates directly over files (and other sources, if specified by 
user defined functions (UDFs)).



(Nested) Data Model
•Atom:

–int, double, chararray, etc.
–E.g., ‘Distributed Data Management’, ‘Michel’ 

•Tuple:
–sequence of fields (any types) ( …, …, …, … )
–E.g., (‘Distributed Data Management’, 2015, {(1,2,3)})

•Bag:
–collection of tuples   (multiset, i.e., can have 

duplicates)
–E.g., {(‘DDM15’, ‘Infosys15’)}

•Map:
–Mapping of keys to values
–E.g., {‘Michel’ => {‘DDM15’}, ‘Deßloch’=>{‘Infosys15’}}
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Pig Latin: Example: Joins

•A

(2,Tie)

(4,Coat)

(3,Hat)

(1,Scarf)

A = LOAD ……; B = LOAD …..

C=Join A BY $0, B BY $1

Also support for OUTER JOINS
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•B

(Joe,2)

(Hank,4)

(Ali,0)

(Eve,3)

(Hank,2)



Data with Associated Schema

PARTS = LOAD  'hdfs:///user/hduser/testjoin/parts.txt' as (id: 
int, name: chararray);

PEOPLE  = LOAD  'hdfs:///user/hduser/testjoin/people.txt' as 
(name: chararray, partsid: int);
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Pig Latin: Commands (Subset)

•LOAD, STORE, DUMP
•FILTER
•FLATTEN
•FOR EACH
•GENERATE
•(CO)GROUP
•CROSS
•JOIN
•ORDER BY
•LIMIT
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PLUS: Built-in and user-
defined functions (UDFs)

http://wiki.apache.org/pig/PigLatin

Christopher Olston, Benjamin Reed, Utkarsh
Srivastava, Ravi Kumar, Andrew Tomkins: Pig 
latin: a not-so-foreign language for data 
processing. SIGMOD Conference 2008: 1099-
1110

http://wiki.apache.org/pig/PigLatin


Example: Word Count

//LOAD input file from HDFS

A = LOAD 'hdfs:///user/hduser/gutenberg' AS (line : chararray);

//Parse input lines into words

B = FOREACH A GENERATE FLATTEN(TOKENIZE(line)) as term;

//Remove whitespace-only words

C = FILTER B BY term MATCHES '\\w+';

//Group by term

D = GROUP C BY term;

//and count for each group (i.e., for a term) its occurrences

E = FOREACH D GENERATE group, COUNT($1) as frequency;

//ORDER by frequency of occurrence

F = ORDER E BY frequency ASC;
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Example: Word Count (Cont’d)

…..

….

(which,2475)

(it,2553)

(that,2715)

(a,3813)

(is,4178)

(to,5070)

(in,5236)

(and,7666)

(of,10394)

(the,20592)
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2013-05-15 10:02:21,062 [main] INFO  
org.apache.pig.backend.hadoop.executionengine.mapReduceL
ayer.MultiQueryOptimizer - MR plan size after optimization: 3

…..

Counters:
Total records written : 17875
Total bytes written : 178274
…

Job DAG:
job_201305031236_0051 -> job_201305031236_0052,
job_201305031236_0052 -> job_201305031236_0053,
job_201305031236_0053

Output: 

Logically, multiple 
connected MapReduce

jobs form a DAG*

*) DAG = Directed Acyclic Graph



(CO)GROUP Example 
•Consider the following data (as CSV input)
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http://joshualande.com/cogroup-in-pig/

owners = LOAD 'owners.csv' 
USING PigStorage(',')
AS (owner:chararray,animal:chararray);

grouped = COGROUP owners BY animal;
DUMP grouped;

This returns a list of animals. For each animal, 
Pig groups the matching rows into bags

group owners

cat {(adam,cat),(alice,cat)}
dog {(adam,dog),(steve,dog)}
fish {(alex,fish)}

•And the following PIG script

adam,cat
adam,dog
alex,fish
alice,cat
steve,dog

ownsers.csv



(CO)GROUP of Two Tables
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nemo,fish
fido,dog
rex,dog
paws,cat
wiskers,cat

adam,cat
adam,dog
alex,fish
alice,cat
steve,dog

pets.csvownsers.csv owners = LOAD 'owners.csv' 
USING PigStorage(',')
AS (owner:chararray,animal:chararray);

pets = LOAD 'pets.csv' 
USING PigStorage(',')
AS (name:chararray,animal:chararray);

grouped = COGROUP owners BY animal, pets 
by animal;
DUMP grouped;

group owners pets

cat {(adam,cat),(alice,cat)} {(paws,cat),(wiskers,cat)}
dog {(adam,dog),(steve,dog)} {(fido,dog),(rex,dog)}

fish {(alex,fish)} {(nemo,fish)}

What is the difference
to a Join?



User Defined Functions in PIG
•Can write your custom UDF in Java and directly 

use it in PIG

•Here for a simple “eval” function:
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REGISTER myudfs.jar;
A = LOAD 'student_data' AS

(name:chararray, age: int, gpa: float);
B = FOREACH A GENERATE 
myudfs.UPPER(name);
……

public class UPPER extends EvalFunc<String>
{

public String exec(Tuple input) throws 
IOException {

if (input == null || input.size() == 0)
return null;

try{
String str = (String)input.get(0);

return str.toUpperCase();
}catch(Exception e){

throw new IOException("Caught 
exception processing input row ", e);

}
}

}

https://wiki.apache.org/pig/UDFManual



Optimizations

•Logical Optimization:

–Filter as early as possible

–Eliminate unnecessary information (project) 

–…

•Multiple MapReduce jobs (in general, not only 
here in Pig) give possibilities to optimize 
execution order. 

•Considering DAG dependencies!

•Reusing stored outputs of previous

Distributed Data Management, SoSe 2015, S. Michel 16



Pig vs. Native MapReduce

“…typically a Pig script is 5% of the code of 
native map/reduce written in about 5% of the 
time. “

“However, queries typically take between 110-
150% the time to execute that a native 
map/reduce job would have taken.”

Distributed Data Management, SoSe 2015, S. Michel 17

http://blog.tonybain.com/tony_bain/2009/11/analytics-at-twitter.html

Two sides of the coin (generally). Statement from
Twitter engineer in 2009.



Pig Latin vs. SQL

•Pig Latin is a data flow programming language

–user specified operation(s) put together to achieve 
task (imperative)

•SQL is declarative

–user specifies what the result should be, not how it 
is implemented
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Pig vs. RDBMS

•RDBMS:

–tables with predefined schema

–support of transactions and indices

–aim at fast response time

•Pig:

–schema at runtime (even optional)

–any source (by applying user defined functions)

–no loading/indexing of data as pre-processing: data is 
loaded at execution time (usually from HDFS)

–like MapReduce (well, Pig is build on top of MR): aim 
at throughput, not super fast short queries
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Hive
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•For structured data

•On top of Hadoop (like Pig) and, hence, HDFS

•“RDBMS for big data”

•Query language is similar to SQL (declarative) (not a 
data flow language as Pig Latin)

•Originated from Facebook’s effort to analyze their 
data.

•Now, an Apache Project



Hive QL

SELECT year, MAX(temperature)

FROM records

WHERE temperature != 9999 AND …..

GROUP BY year;

No full support of SQL-92 standard.
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Note: There are various other projects (specifically at Apache) for 
big data management for various purposes. Have a closer look if 

you are interested!



Literature

• Alan Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan
Narayanam, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, 
Utkarsh Srivastava: Building a HighLevel Dataflow System on top of 
MapReduce: The Pig Experience. PVLDB 2(2): 1414-1425 (2009)

• Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew 
Tomkins: Pig latin: a not-so-foreign language for data processing. SIGMOD 
Conference 2008: 1099-1110

• http://pig.apache.org

• http://wiki.apache.org/pig/PigLatin

• http://hive.apache.org/
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http://pig.apache.org
http://wiki.apache.org/pig/PigLatin
http://hive.apache.org/


Summary MapReduce

•Programming paradigm and infrastructure for 
processing large amounts of data in a batch 
fashion.

•Two functions, map and reduce describe how 
data is processed and aggregated.

•Have seen multiple application scenarios and 
corresponding algorithms.

•MR jobs can be connected to workflows

•PIG is one way to automatically translate higher-
level instructions to MR jobs
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NOSQL
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Example Key/Value Store: Redis

•http://try.redis.io/ <= check this out!

SET name “ddm15”

GET name  #ddm15

LPUSH list “a”

LPUSH list “b”

LLENGTH #2

LRANGE  list 0 1 #   “b”, “a”

Distributed Data Management, SoSe 2013, S. Michel 25

List operations

http://try.redis.io/


NoSQL: Wide Spectrum

•Systems come with different properties.
•In-memory vs. disk based.
•ACID vs. BASE
•CRUD, SQL (subset?), or MapReduce support
•http://nosql-database.org/ lists around 150 NoSQL

Databases

•Different systems for specific requirements. Often 
triggered by demands inside companies.

•Like Voldemort at Linkedin, BigTable (also Hadoop) 
at Google, etc.
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http://nosql-database.org/


Overview of Forthcoming Topics

•Fault Tolerance.

•Pessimistic Replication, Optimistic Replication

•Consistency: ACID vs. Base, CAP Theorem

•Placement of data/nodes in network: 
Consistent hashing.

•Ordering of events: Vector Clocks

•Will look at sample systems, with hands-on 
experience through exercises.

Distributed Data Management, SoSe 2013, S. Michel 27



Wanted Properties

•Data should be always consistent

•Provided service should be always quickly 
responding to requests

•Data can be (is) distributed across many machines 
(partitions)

•Fault Tolerance: Even if some machines fail, the 
system should be up and running

Distributed Data Management, SoSe 2013, S. Michel 28



FAULT TOLERANCE AND REPLICA 
MANAGEMENT

Distributed Data Management, SoSe 2015, S. Michel 29



Benefits of and Issues with Replication
•Many servers handling replicas of a single object can 

efficiently serve read/write requests.
•If one (some) fail, system still is available.
•The same is true for replicating entire servers (not just 

data)

•But….
–Only if all replicas have the same state (value) reading from 

one is enough.
–But how to keep replicas in a consistent state?
–What happens if some replicas are not reachable?
–What if some replicas have corrupted data?
–Need additional storage for replicas.

•Not well done replication can mess up performance as 
well as availability.
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Pessimistic and Optimistic Replication

•Optimistic Replication: Keep replicated objects 
with a not enforced synchronization. Thus, 
replicas can diverge. Need conflict detection and 
resolution.

•Pessimistic Replication: Allow no inconsistencies 
at all through rigor synchronization. Single-Copy 
Consistency.

Distributed Data Management, SoSe 2015, S. Michel 31

Y. Saito,  and M. Shapiro. Optimistic replication. ACM Computing Surveys 37(1), 2005.



One-Copy Serializability

•Given a replicated database system. 

•A concurrent execution of transactions in a 
replicated database is one-copy serializable if it 
is equivalent to a serial execution of these 
transactions over a single logical copy of the 
database.

•Strongest correctness criteria for replicated 
“databases”.
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Illustrations: Client Accessing Replicas
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Replica 1

Client 1 Client 2 Client 3 Client 4

Replica 2 Replica 3



Read one Write All (ROWA)

•Client sends read operation.

•This is transformed into a single physical read 
operation on an arbitrary copy (i.e., read one).
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•Client sends write operation.

•This is transformed into physical write 
operations on all copies (i.e., write all).

Read Operation

Write Operation



ROWA Discussion
•Advantages and disadvantages:

–Straightforward strategy

–Easy to implement

–All copies are up-to-date at all times

–Efficient local read access at each node

–Update operations depends on the availability of all 
nodes that have copies

–Longer runtime for update operations
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Primary Copy Strategy (PrimCopy)

•Principle
–Choose one copy as the primary copy 

–All other copies are considered to be derived from 
the primary copy

–Performing an update operation requires “locking” 
the primary copy

–Read operations at a node can be executed 
efficiently on the local copy

•Workflow
–Primary copy is locked and updated

–Primary copy propagates updates to all copies.
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Network Partitions

•Network partitioning

–The network is partitioned into two or more sub 
networks that can no longer communicate with each 
other

•Why is this a problem?

–Failover to new primary copy or not writing to really 
all replicas leads to subnetworks

–These could continue updating data

=> Problems when networks are again joined (re-
united): Needs to be consolidated

Distributed Data Management, SoSe 2015, S. Michel 37



Aim
•Want approach (system) that

–consists of multiple nodes (for fault tolerance)

–no single point of failure

–single-copy semantics (->no inconsistencies)

•Obviously, nodes can fail, but the system 
should stay operational.

•Essentially: Nodes have to agree on same 
actions (same order of commands).
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Classes of Failures
•Byzantine Failures: The component can exhibit 

arbitrary and malicious behavior, including 
perhabs collusion with other faulty components 
[Lamport et al. ‘82]

•Fail-stop Failures: In response to a failure, the 
component switches to a state that allows other 
components to detect the failure, and then 
stops [Schneider ‘84]
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Apparently, Byzantine failures can be more disruptive and are, thus, more difficult to 
handle. Very critical applications should still handle them, but often handling fail-stop 
failures is enough.



Byzantine Generals Problem
•Imagine several divisions of the Byzantine army 

camp outside an enemy city.

•Each division has its own general.

•General can communicate via messages.

•Messages can be forged.
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Plan of Action and Traitors

•They observe the enemy and must decide on a  
common plan of action.

•However: Some of the generals might be 
traitors, trying to prevent the loyal generals 
from reaching agreement.

•Idea behind possible solutions:
–All loyal generals decide upon the same plan of 

action.

–A small number of traitors cannot cause the local 
generals to adopt a bad plan.
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Two Generals’ Problem

•Variant of problem before

•Armies A1 and A2 want to coordinate attack on 
army B

•The two generals can communicate through 
messengers

•Who needs to pass a valley occupied by the 
enemy.
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aka. two armies problem or the coordinated attack problem



Two Generals’ Problem (Cont’d)
•The messenger sent by A1 (respectively A2) to 

reach A2 might get “lost”

•Generals agree on communication, sending time 
at that they want to attack. E.g., “Attack at 
dawn”.

•Scenario 1: A1 sends “Attack at dawn”, but 
messengers gets killed. A2 never gets message. 
A1 can attack assuming A2 got message?

•Scenario 2: A1 sends “Attack at dawn”, A2 
receives messages and replies “Ok”.
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Two Generals’ Problem (Cont’d)
•Scenario 3: A1 sends “Attack at dawn”, A2 

receives message and replies “Ok”. What is A2 
doing?

•Scenario 4: A1 sends “Attack at dawn”, A2 
receives messages and replies “Ok”. A1 receives 
message and replies “Ok”,….

•……
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http://en.wikipedia.org/wiki/Two_Generals%27_Problem



State Machine

•Set of states

•Set of Inputs

•Set of Outputs

•Transition function (Input x State -> State)

•Output function (Input x State -> Output)

•A special state called Start

Distributed Data Management, SoSe 2015, S. Michel 45

http://www.cs.cornell.edu/fbs/publications/smsurvey.pdf

Simple form of a server. 



Requirements

•Requests from a single client are processed in 
the order they are created.

•If a request r of a client c is created as a result 
(consequence) of a request r’ of a client c’, then 
r’ should be processed before r.
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Fault Tolerance

•What does it mean if a system/component is 
fault tolerant?

•A component is called faulty if its behavior is no 
longer consistent with its specification.                  
(failure = fail-stop or Byzantine, for instance).
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t Fault Tolerance
•A system consisting of a set of distinct 

components is t fault-tolerant if it operates as 
devised provided that not more than t 
components become faulty.
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•How does this compare to statistical measures 
like Mean Time Between Failures (MTBF)?



Fault-Tolerant State Machine

•Can implement fault-tolerant state machine by 
replicating and running replicas of single state 
machine.

•Provided  that 
–all start in the same state
–execute the same request in same order
–all operations are deterministic

they will all do the same thing (-> produce the 
same output).

•Same order requirement is though part: This 
requires coordination!
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t Fault Tolerance (Cont’d)

•How many replicas do we have to keep for the 
state machine to render it t fault tolerant?

•For fail-stop failures: t+1

•For Byzantine failures: 2t+1

Distributed Data Management, SoSe 2015, S. Michel 50



Let’s simply replicate Servers
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time

Client 1

Client 2

Server 1

Server 2

Things can (and will) get messed up …….



Naïve Solution

•Add single coordinator
•That serializes all received operations and sends to 

the replicas
•Single point of failure!
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Replica 1

Client 1 Client 2 Client 3 Client 4

Replica 2 Replica 3

Coordinator



Naïve Solution (Cont’d)

•What if servers crash, come or do not come 
back to life?

•When is the coordinator acknowledging a write 
request a client sent?

•Still leaves open problem of having coordinator 
failing.

•Want: Consensus among nodes, no fixed 
coordinator.
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Consensus Algorithm

•Assume collection of processes that can 
propose values (e.g., actions, requests)

•A consensus algorithms needs to ensure that 
only one single value is chosen, and all 
processes will learn it.

•Basic Question: What operation to execute 
next?

•So, one application of consensus finding for 
each operation a node wants to execute.
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Replicated State Machine
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server

consensus
module

state machine

log

x<-3 y<-1 y<-9 …

x: 3
y: 9
z: 0

client



Requirements of Consensus
•Safety

–Only a value that has been proposed may be chosen.

–Only a single value is chosen.

–A node never learns that a value has been chosen 
unless it actually has been.

•Liveness

–Some proposed value is eventually chosen.

–If a value has been chosen, a node can eventually 
learn the value.
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Paxos Consensus Algorithm

•Paxos algorithms by Leslie Lamport.

•Asynchronous, fault-tolerant                        
consensus algorithms.

•Paper on “Part time parliament” in                        
Greek Island Paxos by Lamport.

•Paxos is guaranteed to reach agreement            
with < N/2 failing nodes.

•But no guarantee on time this agreement takes.
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Assumptions

•Agents keep state in a persistent storage.

•Before sending accept_OK they make the state 
persistent.

•Agents can act at arbitrary speed, may fail by 
stopping, and may restart.

•Messages can take arbitrarily long to be 
delivered, can be duplicated, and can be lost, 
but can never get corrupted.
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Consensus: Roles (Agents)

•The proposers, acceptors, and learners.
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•Considered model:
–Agents fail by stopping, and may restart (need 

logging)

–Messages can take arbitrarily long to be delivered, 
can be duplicated, or lost, but they are not 
corrupted.



Setup: Example
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Proposer 
1

Proposer 
2

Proposer 
3

Acceptor
1

Acceptor
2

Acceptor
3

w(x)

r(y)



Naïve Approach: Single Acceptor

•Have only a single acceptor.

•Proposer send proposals (values) to the 
acceptor.

•The first received proposal is accepted.

•Everyone else agrees on this proposal.

•Not a very good solution in practice. What if the 
acceptor fails? Single point of failure.

•Obviously, need multiple (all) acceptors.
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Majority Required
•Assume now there are 3 acceptors and each one 

accepts first proposal it receives.
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Proposer 
1

Proposer 
2

Proposer 
3

Acceptor
1

Acceptor
2

Acceptor
3

w(x)

r(y)

w(z)

Each proposer 
tries to get 
majority of 
acceptors.

Here, Proposer 
1 reaches 
majority!

Thick arrows indicating proposalreaching acceptor first.



Majority Required (Diff. Case)
•But can also happen that no majority is achieved.
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Proposer 
1

Proposer 
2

Proposer 
3

Acceptor
1

Acceptor
2

Acceptor
3

w(x)

r(y)

w(z)

Thick arrows indicating proposalreaching acceptor first.

How is it avoided 
that system
is blocking now?



Sequence Numbers

•Proposal is sent to all acceptors in a message 
called “prepare”, together with a sequence 
number.

•Sequence number is created at proposer, 
unique (no two proposers use the same), e.g., 
through clock

•Meaning: Please accept the proposal with this 
number.

•Sequence number is used to differentiate 
between older and newer proposals.
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aka. proposal numbers



Sequence Numbers (Cont’d)

•Because sequence numbers are unique, we for 
sure can tell which proposal is “newer”

•At the acceptor: Is the incoming sequence 
number the highest ever seen?

•Then, promise to not accept any older proposals 
(i.e., promise message)
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Paxos (Made Simple): Phase 1
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Must read: http://research.microsoft.com/en-
us/um/people/lamport/pubs/paxos-simple.pdf

http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf


Paxos (Made Simple): Phase 2
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Acceptor State

•Each Acceptor keeps

Np:  Highest proposal number received so far

Na:  Highest proposal number accepted

Va:   Proposal value corresponding to Na
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Paxos Pseudo Code
Propose(V):

chose unique N, N>Np
send Prepare(N) to all nodes
if Prepare_OK(Na, Va) from majority:

V* = Va with highest Na, or V if none
send Accept(N, V*) to all nodes
if Accept_OK(N) from majority:

send Decided(V*) to all
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Prepare(N):
if N>Np:

Np = N
reply Prepare_OK(Na, Va)

Accept(N,V):
if N>=Np:

Na = N, Va = V
reply Accept_OK(Na, Va)

Acceptor State:
Np = 
Na = 
Va =
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Paxos Example (1)

Proposer 
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer 
2

Np = 
Na = 
Va =

Np = 
Na = 
Va =

Np = 
Na = 
Va =
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Paxos Example (2)

Proposer 
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer 
2

Np = 
Na = 
Va =

Np = 
Na = 
Va =

Np = 
Na = 
Va =

prepare(10)
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Paxos Example (3)

Proposer 
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer 
2

Np = 10 
Na = 
Va =

Np = 10
Na = 
Va =

Np = 10 
Na = 
Va =

prepare_ok(10)

Acceptors promise to 
not accept any proposal 
with number small than 

10

prepare_ok(10)

prepare_ok(10)
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Paxos Example (4)

Proposer 
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer 
2

Np = 10 
Na = 
Va =

Np = 10
Na = 
Va =

Np = 10 
Na = 
Va =

prepare(9)

REJECT
Since 
9<10
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Paxos Example (5)

Proposer 
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer 
2

Np = 10 
Na = 
Va =

Np = 10
Na = 
Va =

Np = 10 
Na = 
Va =

prepare(11)
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Paxos Example (6)

Proposer 
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer 
2

Np = 11 
Na = 
Va =

Np = 11
Na = 
Va =

Np = 11 
Na = 
Va =

prepare_ok(11)

prepare_ok(11)

prepare_ok(11)

Acceptors promise to 
not accept any proposal 
with number small than 

11
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Paxos Example (7)

Proposer 
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer 
2

Np = 11 
Na = 
Va =

Np = 11
Na = 
Va =

Np = 11 
Na = 
Va =

accept(10,X)

accept(10,X)

accept(10,X)

Proposer 1 that got the promise in the first
round now tries to get proposal accepted.
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Paxos Example (8)

Proposer 
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer 
2

Np = 11 
Na = 
Va =

Np = 11
Na = 
Va =

Np = 11 
Na = 
Va =

accept(10,X)

accept(10,X)

accept(10,X)

REJECT
Since 
10<11

The accept message is rejected by the 
acceptors,
Since in the meantime they gave a 
promise for sequence number 11.
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Paxos Example (9)

Proposer 
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer 
2

Np = 11 
Na = 11
Va =  Y

Np = 11
Na = 11
Va =  Y

Np = 11 
Na = 11
Va = Y

accept(11,Y)

accept(11,Y)

accept(11,Y)

Acceptors accept the accept message and update their
status plus send back ACK.
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Paxos Example (10)

Proposer 
1 Acceptor

1

Acceptor
2

Acceptor
3

Proposer 
3

Np = 11 
Na = 11
Va =  Y

Np = 11
Na = 11
Va =  Y

Np = 11 
Na = 11
Va = Y

prepare(12)

Proposer 
2

prepare(12)

prepare(12)

Proposer 3 gets now active (possibly after crash)
and issues a proposal with sequence number 12 and value Z.
What happens? 



Learning Accepted Values

•Once an acceptor accepts a value it can 
broadcast it to the “learners” (all nodes).

•(or using some more efficient dissemination 
plan)

•Learners have to make sure to insists on a 
majority of acceptors.
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Multi-Paxos

•Remember that we wanted to build a replicated state 
machine (to render it t fault tolerant).

•The Paxos algorithm described, is executed to reach a 
single consensus.

•To realize a distributed state machine, multiple rounds of 
Paxos are executed to decide on the individual 
commands.

•There is also a generalized Paxos that allows operations 
to be accepted in any order (if they are commutative), 
think: non conflicting operations in DBs, r(x)w(y) ….
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Termination of Paxos
•With one proposer it is easy to see that it is not difficult to 

terminate after some time.

•With two proposers already one can make up a strategy that 
lets Paxos never terminate.

•What is usually done it to elect a leader “proposer” to 
assure progress, if multiple rounds of Paxos are executed for 
the State machine.

•Leader can be elected with Paxos, given, once Acceptors 
accept a proposal.

•Or, breaking “dueling” proposers  by randomized exponential 
backoff.
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Byzantine Paxos

•When not being restricted to fail-stop failures, 
but Byzantine ones,

•Paxos requires an additional verification round.
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