
Distributed Data Management
Summer Semester 2015

TU Kaiserslautern

Prof. Dr.-Ing. Sebastian Michel

Databases and Information Systems
Group (AG DBIS)

http://dbis.informatik.uni-kl.de/

Distributed Data Management, SoSe 2015, S. Michel 1

PIG AND HIVE
TWO HIGHER-LEVEL APPROACHES TO PROCESS DATA WITH MAPREDUCE

Distributed Data Management, SoSe 2015, S. Michel 2

MapReduce
•Remember slides on pros and cons of

MapReduce, particularly criticism (too low level,
…)

•We have seen how to code joins in MR

•How to filter (grep!), group by, …

•Now: look at higher-level ”tools” on top of
MapReduce

•Why? Claim: MapReduce too low level for
“normal” users (developers) + large effort for ad-
hoc queries.

Distributed Data Management, SoSe 2015, S. Michel 3

Pig & Pig Latin

•High-level tool for expressing data analysis
programs, originated from Yahoo (now at
Apache)

•Compiler transforms query into sequence of
MapReduce jobs

•Data Flow language, Pig Latin (not really
something like SQL)

•http://pig.apache.org

Distributed Data Management, SoSe 2015, S. Michel 4

Gates et al. Building a HighLevel Dataflow System on top of MapReduce: The Pig
Experience. PVLDB 2(2): 1414-1425 (2009)

http://pig.apache.org

Relation Pig and Hadoop

Distributed Data Management, SoSe 2015, S. Michel 5

Hadoop
MapReduce

A = LOAD 'input' AS (x, y, z);

B = FILTER A BY x > 5;

STORE B INTO 'output';

Pig Latin Commands:

Parsing, logical optimization.

Creation of MapReduce jobs
+ running them.

Example
Input, e.g., using Shell:

Commands like:

A = LOAD 'input' AS (x, y, z);

B = FILTER A BY x > 5;

STORE B INTO 'output';

Distributed Data Management, SoSe 2015, S. Michel 6

grunt> ….

Pig operates directly over files (and other sources, if specified by
user defined functions (UDFs)).

(Nested) Data Model
•Atom:

–int, double, chararray, etc.
–E.g., ‘Distributed Data Management’, ‘Michel’

•Tuple:
–sequence of fields (any types) (…, …, …, …)
–E.g., (‘Distributed Data Management’, 2015, {(1,2,3)})

•Bag:
–collection of tuples (multiset, i.e., can have

duplicates)
–E.g., {(‘DDM15’, ‘Infosys15’)}

•Map:
–Mapping of keys to values
–E.g., {‘Michel’ => {‘DDM15’}, ‘Deßloch’=>{‘Infosys15’}}

Distributed Data Management, SoSe 2015, S. Michel 7

V
io

la
te

s
Fi

rs
t

N
o

rm
al

 F
o

rm
 o

f
tr

ad
it

io
n

al
 R

D
M

B
S

Pig Latin: Example: Joins

•A

(2,Tie)

(4,Coat)

(3,Hat)

(1,Scarf)

A = LOAD ……; B = LOAD …..

C=Join A BY $0, B BY $1

Also support for OUTER JOINS
Distributed Data Management, SoSe 2015, S. Michel 8

•B

(Joe,2)

(Hank,4)

(Ali,0)

(Eve,3)

(Hank,2)

Data with Associated Schema

PARTS = LOAD 'hdfs:///user/hduser/testjoin/parts.txt' as (id:
int, name: chararray);

PEOPLE = LOAD 'hdfs:///user/hduser/testjoin/people.txt' as
(name: chararray, partsid: int);

Distributed Data Management, SoSe 2015, S. Michel 9

Pig Latin: Commands (Subset)

•LOAD, STORE, DUMP
•FILTER
•FLATTEN
•FOR EACH
•GENERATE
•(CO)GROUP
•CROSS
•JOIN
•ORDER BY
•LIMIT

Distributed Data Management, SoSe 2015, S. Michel 10

PLUS: Built-in and user-
defined functions (UDFs)

http://wiki.apache.org/pig/PigLatin

Christopher Olston, Benjamin Reed, Utkarsh
Srivastava, Ravi Kumar, Andrew Tomkins: Pig
latin: a not-so-foreign language for data
processing. SIGMOD Conference 2008: 1099-
1110

http://wiki.apache.org/pig/PigLatin

Example: Word Count

//LOAD input file from HDFS

A = LOAD 'hdfs:///user/hduser/gutenberg' AS (line : chararray);

//Parse input lines into words

B = FOREACH A GENERATE FLATTEN(TOKENIZE(line)) as term;

//Remove whitespace-only words

C = FILTER B BY term MATCHES '\\w+';

//Group by term

D = GROUP C BY term;

//and count for each group (i.e., for a term) its occurrences

E = FOREACH D GENERATE group, COUNT($1) as frequency;

//ORDER by frequency of occurrence

F = ORDER E BY frequency ASC;

Distributed Data Management, SoSe 2015, S. Michel 11

Example: Word Count (Cont’d)

…..

….

(which,2475)

(it,2553)

(that,2715)

(a,3813)

(is,4178)

(to,5070)

(in,5236)

(and,7666)

(of,10394)

(the,20592)

Distributed Data Management, SoSe 2015, S. Michel 12

2013-05-15 10:02:21,062 [main] INFO
org.apache.pig.backend.hadoop.executionengine.mapReduceL
ayer.MultiQueryOptimizer - MR plan size after optimization: 3

…..

Counters:
Total records written : 17875
Total bytes written : 178274
…

Job DAG:
job_201305031236_0051 -> job_201305031236_0052,
job_201305031236_0052 -> job_201305031236_0053,
job_201305031236_0053

Output:

Logically, multiple
connected MapReduce

jobs form a DAG*

*) DAG = Directed Acyclic Graph

(CO)GROUP Example
•Consider the following data (as CSV input)

Distributed Data Management, SoSe 2015, S. Michel 13

http://joshualande.com/cogroup-in-pig/

owners = LOAD 'owners.csv'
USING PigStorage(',')
AS (owner:chararray,animal:chararray);

grouped = COGROUP owners BY animal;
DUMP grouped;

This returns a list of animals. For each animal,
Pig groups the matching rows into bags

group owners

cat {(adam,cat),(alice,cat)}
dog {(adam,dog),(steve,dog)}
fish {(alex,fish)}

•And the following PIG script

adam,cat
adam,dog
alex,fish
alice,cat
steve,dog

ownsers.csv

(CO)GROUP of Two Tables

Distributed Data Management, SoSe 2015, S. Michel 14

nemo,fish
fido,dog
rex,dog
paws,cat
wiskers,cat

adam,cat
adam,dog
alex,fish
alice,cat
steve,dog

pets.csvownsers.csv owners = LOAD 'owners.csv'
USING PigStorage(',')
AS (owner:chararray,animal:chararray);

pets = LOAD 'pets.csv'
USING PigStorage(',')
AS (name:chararray,animal:chararray);

grouped = COGROUP owners BY animal, pets
by animal;
DUMP grouped;

group owners pets

cat {(adam,cat),(alice,cat)} {(paws,cat),(wiskers,cat)}
dog {(adam,dog),(steve,dog)} {(fido,dog),(rex,dog)}

fish {(alex,fish)} {(nemo,fish)}

What is the difference
to a Join?

User Defined Functions in PIG
•Can write your custom UDF in Java and directly

use it in PIG

•Here for a simple “eval” function:

Distributed Data Management, SoSe 2015, S. Michel 15

REGISTER myudfs.jar;
A = LOAD 'student_data' AS

(name:chararray, age: int, gpa: float);
B = FOREACH A GENERATE
myudfs.UPPER(name);
……

public class UPPER extends EvalFunc<String>
{

public String exec(Tuple input) throws
IOException {

if (input == null || input.size() == 0)
return null;

try{
String str = (String)input.get(0);

return str.toUpperCase();
}catch(Exception e){

throw new IOException("Caught
exception processing input row ", e);

}
}

}

https://wiki.apache.org/pig/UDFManual

Optimizations

•Logical Optimization:

–Filter as early as possible

–Eliminate unnecessary information (project)

–…

•Multiple MapReduce jobs (in general, not only
here in Pig) give possibilities to optimize
execution order.

•Considering DAG dependencies!

•Reusing stored outputs of previous

Distributed Data Management, SoSe 2015, S. Michel 16

Pig vs. Native MapReduce

“…typically a Pig script is 5% of the code of
native map/reduce written in about 5% of the
time. “

“However, queries typically take between 110-
150% the time to execute that a native
map/reduce job would have taken.”

Distributed Data Management, SoSe 2015, S. Michel 17

http://blog.tonybain.com/tony_bain/2009/11/analytics-at-twitter.html

Two sides of the coin (generally). Statement from
Twitter engineer in 2009.

Pig Latin vs. SQL

•Pig Latin is a data flow programming language

–user specified operation(s) put together to achieve
task (imperative)

•SQL is declarative

–user specifies what the result should be, not how it
is implemented

Distributed Data Management, SoSe 2015, S. Michel 18

Pig vs. RDBMS

•RDBMS:

–tables with predefined schema

–support of transactions and indices

–aim at fast response time

•Pig:

–schema at runtime (even optional)

–any source (by applying user defined functions)

–no loading/indexing of data as pre-processing: data is
loaded at execution time (usually from HDFS)

–like MapReduce (well, Pig is build on top of MR): aim
at throughput, not super fast short queries

Distributed Data Management, SoSe 2015, S. Michel 19

Hive

Distributed Data Management, SoSe 2015, S. Michel 20

•For structured data

•On top of Hadoop (like Pig) and, hence, HDFS

•“RDBMS for big data”

•Query language is similar to SQL (declarative) (not a
data flow language as Pig Latin)

•Originated from Facebook’s effort to analyze their
data.

•Now, an Apache Project

Hive QL

SELECT year, MAX(temperature)

FROM records

WHERE temperature != 9999 AND …..

GROUP BY year;

No full support of SQL-92 standard.

Distributed Data Management, SoSe 2015, S. Michel 21

Note: There are various other projects (specifically at Apache) for
big data management for various purposes. Have a closer look if

you are interested!

Literature

• Alan Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan
Narayanam, Christopher Olston, Benjamin Reed, Santhosh Srinivasan,
Utkarsh Srivastava: Building a HighLevel Dataflow System on top of
MapReduce: The Pig Experience. PVLDB 2(2): 1414-1425 (2009)

• Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, Andrew
Tomkins: Pig latin: a not-so-foreign language for data processing. SIGMOD
Conference 2008: 1099-1110

• http://pig.apache.org

• http://wiki.apache.org/pig/PigLatin

• http://hive.apache.org/

Distributed Data Management, SoSe 2015, S. Michel 22

http://pig.apache.org
http://wiki.apache.org/pig/PigLatin
http://hive.apache.org/

Summary MapReduce

•Programming paradigm and infrastructure for
processing large amounts of data in a batch
fashion.

•Two functions, map and reduce describe how
data is processed and aggregated.

•Have seen multiple application scenarios and
corresponding algorithms.

•MR jobs can be connected to workflows

•PIG is one way to automatically translate higher-
level instructions to MR jobs

Distributed Data Management, SoSe 2015, S. Michel 23

NOSQL

Distributed Data Management, SoSe 2015, S. Michel 24

Example Key/Value Store: Redis

•http://try.redis.io/ <= check this out!

SET name “ddm15”

GET name #ddm15

LPUSH list “a”

LPUSH list “b”

LLENGTH #2

LRANGE list 0 1 # “b”, “a”

Distributed Data Management, SoSe 2013, S. Michel 25

List operations

http://try.redis.io/

NoSQL: Wide Spectrum

•Systems come with different properties.
•In-memory vs. disk based.
•ACID vs. BASE
•CRUD, SQL (subset?), or MapReduce support
•http://nosql-database.org/ lists around 150 NoSQL

Databases

•Different systems for specific requirements. Often
triggered by demands inside companies.

•Like Voldemort at Linkedin, BigTable (also Hadoop)
at Google, etc.

Distributed Data Management, SoSe 2013, S. Michel 26

http://nosql-database.org/

Overview of Forthcoming Topics

•Fault Tolerance.

•Pessimistic Replication, Optimistic Replication

•Consistency: ACID vs. Base, CAP Theorem

•Placement of data/nodes in network:
Consistent hashing.

•Ordering of events: Vector Clocks

•Will look at sample systems, with hands-on
experience through exercises.

Distributed Data Management, SoSe 2013, S. Michel 27

Wanted Properties

•Data should be always consistent

•Provided service should be always quickly
responding to requests

•Data can be (is) distributed across many machines
(partitions)

•Fault Tolerance: Even if some machines fail, the
system should be up and running

Distributed Data Management, SoSe 2013, S. Michel 28

FAULT TOLERANCE AND REPLICA
MANAGEMENT

Distributed Data Management, SoSe 2015, S. Michel 29

Benefits of and Issues with Replication
•Many servers handling replicas of a single object can

efficiently serve read/write requests.
•If one (some) fail, system still is available.
•The same is true for replicating entire servers (not just

data)

•But….
–Only if all replicas have the same state (value) reading from

one is enough.
–But how to keep replicas in a consistent state?
–What happens if some replicas are not reachable?
–What if some replicas have corrupted data?
–Need additional storage for replicas.

•Not well done replication can mess up performance as
well as availability.

Distributed Data Management, SoSe 2015, S. Michel 30

Pessimistic and Optimistic Replication

•Optimistic Replication: Keep replicated objects
with a not enforced synchronization. Thus,
replicas can diverge. Need conflict detection and
resolution.

•Pessimistic Replication: Allow no inconsistencies
at all through rigor synchronization. Single-Copy
Consistency.

Distributed Data Management, SoSe 2015, S. Michel 31

Y. Saito, and M. Shapiro. Optimistic replication. ACM Computing Surveys 37(1), 2005.

One-Copy Serializability

•Given a replicated database system.

•A concurrent execution of transactions in a
replicated database is one-copy serializable if it
is equivalent to a serial execution of these
transactions over a single logical copy of the
database.

•Strongest correctness criteria for replicated
“databases”.

Distributed Data Management, SoSe 2015, S. Michel 32

Illustrations: Client Accessing Replicas

Distributed Data Management, SoSe 2015, S. Michel 33

Replica 1

Client 1 Client 2 Client 3 Client 4

Replica 2 Replica 3

Read one Write All (ROWA)

•Client sends read operation.

•This is transformed into a single physical read
operation on an arbitrary copy (i.e., read one).

Distributed Data Management, SoSe 2015, S. Michel 34

•Client sends write operation.

•This is transformed into physical write
operations on all copies (i.e., write all).

Read Operation

Write Operation

ROWA Discussion
•Advantages and disadvantages:

–Straightforward strategy

–Easy to implement

–All copies are up-to-date at all times

–Efficient local read access at each node

–Update operations depends on the availability of all
nodes that have copies

–Longer runtime for update operations

Distributed Data Management, SoSe 2015, S. Michel 35

Primary Copy Strategy (PrimCopy)

•Principle
–Choose one copy as the primary copy

–All other copies are considered to be derived from
the primary copy

–Performing an update operation requires “locking”
the primary copy

–Read operations at a node can be executed
efficiently on the local copy

•Workflow
–Primary copy is locked and updated

–Primary copy propagates updates to all copies.

Distributed Data Management, SoSe 2015, S. Michel 36

Network Partitions

•Network partitioning

–The network is partitioned into two or more sub
networks that can no longer communicate with each
other

•Why is this a problem?

–Failover to new primary copy or not writing to really
all replicas leads to subnetworks

–These could continue updating data

=> Problems when networks are again joined (re-
united): Needs to be consolidated

Distributed Data Management, SoSe 2015, S. Michel 37

Aim
•Want approach (system) that

–consists of multiple nodes (for fault tolerance)

–no single point of failure

–single-copy semantics (->no inconsistencies)

•Obviously, nodes can fail, but the system
should stay operational.

•Essentially: Nodes have to agree on same
actions (same order of commands).

Distributed Data Management, SoSe 2015, S. Michel 38

Classes of Failures
•Byzantine Failures: The component can exhibit

arbitrary and malicious behavior, including
perhabs collusion with other faulty components
[Lamport et al. ‘82]

•Fail-stop Failures: In response to a failure, the
component switches to a state that allows other
components to detect the failure, and then
stops [Schneider ‘84]

Distributed Data Management, SoSe 2015, S. Michel 39

Apparently, Byzantine failures can be more disruptive and are, thus, more difficult to
handle. Very critical applications should still handle them, but often handling fail-stop
failures is enough.

Byzantine Generals Problem
•Imagine several divisions of the Byzantine army

camp outside an enemy city.

•Each division has its own general.

•General can communicate via messages.

•Messages can be forged.
Distributed Data Management, SoSe 2015, S. Michel 40

Plan of Action and Traitors

•They observe the enemy and must decide on a
common plan of action.

•However: Some of the generals might be
traitors, trying to prevent the loyal generals
from reaching agreement.

•Idea behind possible solutions:
–All loyal generals decide upon the same plan of

action.

–A small number of traitors cannot cause the local
generals to adopt a bad plan.

Distributed Data Management, SoSe 2015, S. Michel 41

Two Generals’ Problem

•Variant of problem before

•Armies A1 and A2 want to coordinate attack on
army B

•The two generals can communicate through
messengers

•Who needs to pass a valley occupied by the
enemy.

Distributed Data Management, SoSe 2015, S. Michel 42

aka. two armies problem or the coordinated attack problem

Two Generals’ Problem (Cont’d)
•The messenger sent by A1 (respectively A2) to

reach A2 might get “lost”

•Generals agree on communication, sending time
at that they want to attack. E.g., “Attack at
dawn”.

•Scenario 1: A1 sends “Attack at dawn”, but
messengers gets killed. A2 never gets message.
A1 can attack assuming A2 got message?

•Scenario 2: A1 sends “Attack at dawn”, A2
receives messages and replies “Ok”.

Distributed Data Management, SoSe 2015, S. Michel 43

Two Generals’ Problem (Cont’d)
•Scenario 3: A1 sends “Attack at dawn”, A2

receives message and replies “Ok”. What is A2
doing?

•Scenario 4: A1 sends “Attack at dawn”, A2
receives messages and replies “Ok”. A1 receives
message and replies “Ok”,….

•……

Distributed Data Management, SoSe 2015, S. Michel 44

http://en.wikipedia.org/wiki/Two_Generals%27_Problem

State Machine

•Set of states

•Set of Inputs

•Set of Outputs

•Transition function (Input x State -> State)

•Output function (Input x State -> Output)

•A special state called Start

Distributed Data Management, SoSe 2015, S. Michel 45

http://www.cs.cornell.edu/fbs/publications/smsurvey.pdf

Simple form of a server.

Requirements

•Requests from a single client are processed in
the order they are created.

•If a request r of a client c is created as a result
(consequence) of a request r’ of a client c’, then
r’ should be processed before r.

Distributed Data Management, SoSe 2015, S. Michel 46

Fault Tolerance

•What does it mean if a system/component is
fault tolerant?

•A component is called faulty if its behavior is no
longer consistent with its specification.
(failure = fail-stop or Byzantine, for instance).

Distributed Data Management, SoSe 2015, S. Michel 47

t Fault Tolerance
•A system consisting of a set of distinct

components is t fault-tolerant if it operates as
devised provided that not more than t
components become faulty.

Distributed Data Management, SoSe 2015, S. Michel 48

•How does this compare to statistical measures
like Mean Time Between Failures (MTBF)?

Fault-Tolerant State Machine

•Can implement fault-tolerant state machine by
replicating and running replicas of single state
machine.

•Provided that
–all start in the same state
–execute the same request in same order
–all operations are deterministic

they will all do the same thing (-> produce the
same output).

•Same order requirement is though part: This
requires coordination!

Distributed Data Management, SoSe 2015, S. Michel 49

t Fault Tolerance (Cont’d)

•How many replicas do we have to keep for the
state machine to render it t fault tolerant?

•For fail-stop failures: t+1

•For Byzantine failures: 2t+1

Distributed Data Management, SoSe 2015, S. Michel 50

Let’s simply replicate Servers

Distributed Data Management, SoSe 2015, S. Michel 51

time

Client 1

Client 2

Server 1

Server 2

Things can (and will) get messed up …….

Naïve Solution

•Add single coordinator
•That serializes all received operations and sends to

the replicas
•Single point of failure!

Distributed Data Management, SoSe 2015, S. Michel 52

Replica 1

Client 1 Client 2 Client 3 Client 4

Replica 2 Replica 3

Coordinator

Naïve Solution (Cont’d)

•What if servers crash, come or do not come
back to life?

•When is the coordinator acknowledging a write
request a client sent?

•Still leaves open problem of having coordinator
failing.

•Want: Consensus among nodes, no fixed
coordinator.

Distributed Data Management, SoSe 2015, S. Michel 53

Consensus Algorithm

•Assume collection of processes that can
propose values (e.g., actions, requests)

•A consensus algorithms needs to ensure that
only one single value is chosen, and all
processes will learn it.

•Basic Question: What operation to execute
next?

•So, one application of consensus finding for
each operation a node wants to execute.

Distributed Data Management, SoSe 2015, S. Michel 54

Replicated State Machine

Distributed Data Management, SoSe 2015, S. Michel 55

server

consensus
module

state machine

log

x<-3 y<-1 y<-9 …

x: 3
y: 9
z: 0

client

Requirements of Consensus
•Safety

–Only a value that has been proposed may be chosen.

–Only a single value is chosen.

–A node never learns that a value has been chosen
unless it actually has been.

•Liveness

–Some proposed value is eventually chosen.

–If a value has been chosen, a node can eventually
learn the value.

Distributed Data Management, SoSe 2015, S. Michel 56

Paxos Consensus Algorithm

•Paxos algorithms by Leslie Lamport.

•Asynchronous, fault-tolerant
consensus algorithms.

•Paper on “Part time parliament” in
Greek Island Paxos by Lamport.

•Paxos is guaranteed to reach agreement
with < N/2 failing nodes.

•But no guarantee on time this agreement takes.

Distributed Data Management, SoSe 2015, S. Michel 57

2
0

1
3

 T
u

ri
n

g
A

w
ar

d
 R

ec
ip

ie
n

t

Assumptions

•Agents keep state in a persistent storage.

•Before sending accept_OK they make the state
persistent.

•Agents can act at arbitrary speed, may fail by
stopping, and may restart.

•Messages can take arbitrarily long to be
delivered, can be duplicated, and can be lost,
but can never get corrupted.

Distributed Data Management, SoSe 2015, S. Michel 58

Consensus: Roles (Agents)

•The proposers, acceptors, and learners.

Distributed Data Management, SoSe 2015, S. Michel 59

•Considered model:
–Agents fail by stopping, and may restart (need

logging)

–Messages can take arbitrarily long to be delivered,
can be duplicated, or lost, but they are not
corrupted.

Setup: Example

Distributed Data Management, SoSe 2015, S. Michel 60

Proposer
1

Proposer
2

Proposer
3

Acceptor
1

Acceptor
2

Acceptor
3

w(x)

r(y)

Naïve Approach: Single Acceptor

•Have only a single acceptor.

•Proposer send proposals (values) to the
acceptor.

•The first received proposal is accepted.

•Everyone else agrees on this proposal.

•Not a very good solution in practice. What if the
acceptor fails? Single point of failure.

•Obviously, need multiple (all) acceptors.

Distributed Data Management, SoSe 2015, S. Michel 61

Majority Required
•Assume now there are 3 acceptors and each one

accepts first proposal it receives.

Distributed Data Management, SoSe 2015, S. Michel 62

Proposer
1

Proposer
2

Proposer
3

Acceptor
1

Acceptor
2

Acceptor
3

w(x)

r(y)

w(z)

Each proposer
tries to get
majority of
acceptors.

Here, Proposer
1 reaches
majority!

Thick arrows indicating proposalreaching acceptor first.

Majority Required (Diff. Case)
•But can also happen that no majority is achieved.

Distributed Data Management, SoSe 2015, S. Michel 63

Proposer
1

Proposer
2

Proposer
3

Acceptor
1

Acceptor
2

Acceptor
3

w(x)

r(y)

w(z)

Thick arrows indicating proposalreaching acceptor first.

How is it avoided
that system
is blocking now?

Sequence Numbers

•Proposal is sent to all acceptors in a message
called “prepare”, together with a sequence
number.

•Sequence number is created at proposer,
unique (no two proposers use the same), e.g.,
through clock

•Meaning: Please accept the proposal with this
number.

•Sequence number is used to differentiate
between older and newer proposals.

Distributed Data Management, SoSe 2015, S. Michel 64

aka. proposal numbers

Sequence Numbers (Cont’d)

•Because sequence numbers are unique, we for
sure can tell which proposal is “newer”

•At the acceptor: Is the incoming sequence
number the highest ever seen?

•Then, promise to not accept any older proposals
(i.e., promise message)

Distributed Data Management, SoSe 2015, S. Michel 65

Paxos (Made Simple): Phase 1

Distributed Data Management, SoSe 2015, S. Michel 66

Must read: http://research.microsoft.com/en-
us/um/people/lamport/pubs/paxos-simple.pdf

http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf

Paxos (Made Simple): Phase 2

Distributed Data Management, SoSe 2015, S. Michel 67

Acceptor State

•Each Acceptor keeps

Np: Highest proposal number received so far

Na: Highest proposal number accepted

Va: Proposal value corresponding to Na

Distributed Data Management, SoSe 2015, S. Michel 68

Paxos Pseudo Code
Propose(V):

chose unique N, N>Np
send Prepare(N) to all nodes
if Prepare_OK(Na, Va) from majority:

V* = Va with highest Na, or V if none
send Accept(N, V*) to all nodes
if Accept_OK(N) from majority:

send Decided(V*) to all

Distributed Data Management, SoSe 2015, S. Michel 69

Prepare(N):
if N>Np:

Np = N
reply Prepare_OK(Na, Va)

Accept(N,V):
if N>=Np:

Na = N, Va = V
reply Accept_OK(Na, Va)

Acceptor State:
Np =
Na =
Va =

Distributed Data Management, SoSe 2015, S. Michel 70

Paxos Example (1)

Proposer
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer
2

Np =
Na =
Va =

Np =
Na =
Va =

Np =
Na =
Va =

Distributed Data Management, SoSe 2015, S. Michel 71

Paxos Example (2)

Proposer
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer
2

Np =
Na =
Va =

Np =
Na =
Va =

Np =
Na =
Va =

prepare(10)

Distributed Data Management, SoSe 2015, S. Michel 72

Paxos Example (3)

Proposer
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer
2

Np = 10
Na =
Va =

Np = 10
Na =
Va =

Np = 10
Na =
Va =

prepare_ok(10)

Acceptors promise to
not accept any proposal
with number small than

10

prepare_ok(10)

prepare_ok(10)

Distributed Data Management, SoSe 2015, S. Michel 73

Paxos Example (4)

Proposer
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer
2

Np = 10
Na =
Va =

Np = 10
Na =
Va =

Np = 10
Na =
Va =

prepare(9)

REJECT
Since
9<10

Distributed Data Management, SoSe 2015, S. Michel 74

Paxos Example (5)

Proposer
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer
2

Np = 10
Na =
Va =

Np = 10
Na =
Va =

Np = 10
Na =
Va =

prepare(11)

Distributed Data Management, SoSe 2015, S. Michel 75

Paxos Example (6)

Proposer
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer
2

Np = 11
Na =
Va =

Np = 11
Na =
Va =

Np = 11
Na =
Va =

prepare_ok(11)

prepare_ok(11)

prepare_ok(11)

Acceptors promise to
not accept any proposal
with number small than

11

Distributed Data Management, SoSe 2015, S. Michel 76

Paxos Example (7)

Proposer
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer
2

Np = 11
Na =
Va =

Np = 11
Na =
Va =

Np = 11
Na =
Va =

accept(10,X)

accept(10,X)

accept(10,X)

Proposer 1 that got the promise in the first
round now tries to get proposal accepted.

Distributed Data Management, SoSe 2015, S. Michel 77

Paxos Example (8)

Proposer
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer
2

Np = 11
Na =
Va =

Np = 11
Na =
Va =

Np = 11
Na =
Va =

accept(10,X)

accept(10,X)

accept(10,X)

REJECT
Since
10<11

The accept message is rejected by the
acceptors,
Since in the meantime they gave a
promise for sequence number 11.

Distributed Data Management, SoSe 2015, S. Michel 78

Paxos Example (9)

Proposer
1

Acceptor
1

Acceptor
2

Acceptor
3

Proposer
2

Np = 11
Na = 11
Va = Y

Np = 11
Na = 11
Va = Y

Np = 11
Na = 11
Va = Y

accept(11,Y)

accept(11,Y)

accept(11,Y)

Acceptors accept the accept message and update their
status plus send back ACK.

Distributed Data Management, SoSe 2015, S. Michel 79

Paxos Example (10)

Proposer
1 Acceptor

1

Acceptor
2

Acceptor
3

Proposer
3

Np = 11
Na = 11
Va = Y

Np = 11
Na = 11
Va = Y

Np = 11
Na = 11
Va = Y

prepare(12)

Proposer
2

prepare(12)

prepare(12)

Proposer 3 gets now active (possibly after crash)
and issues a proposal with sequence number 12 and value Z.
What happens?

Learning Accepted Values

•Once an acceptor accepts a value it can
broadcast it to the “learners” (all nodes).

•(or using some more efficient dissemination
plan)

•Learners have to make sure to insists on a
majority of acceptors.

Distributed Data Management, SoSe 2015, S. Michel 80

Multi-Paxos

•Remember that we wanted to build a replicated state
machine (to render it t fault tolerant).

•The Paxos algorithm described, is executed to reach a
single consensus.

•To realize a distributed state machine, multiple rounds of
Paxos are executed to decide on the individual
commands.

•There is also a generalized Paxos that allows operations
to be accepted in any order (if they are commutative),
think: non conflicting operations in DBs, r(x)w(y) ….

Distributed Data Management, SoSe 2015, S. Michel 81

Termination of Paxos
•With one proposer it is easy to see that it is not difficult to

terminate after some time.

•With two proposers already one can make up a strategy that
lets Paxos never terminate.

•What is usually done it to elect a leader “proposer” to
assure progress, if multiple rounds of Paxos are executed for
the State machine.

•Leader can be elected with Paxos, given, once Acceptors
accept a proposal.

•Or, breaking “dueling” proposers by randomized exponential
backoff.

Distributed Data Management, SoSe 2015, S. Michel 82

Byzantine Paxos

•When not being restricted to fail-stop failures,
but Byzantine ones,

•Paxos requires an additional verification round.

Distributed Data Management, SoSe 2015, S. Michel 83

Literature

•Leslie Lamport. Paxos Made Simple.
http://research.microsoft.com/en-
us/um/people/lamport/pubs/paxos-simple.pdf

•Leslie Lamport, Robert E. Shostak, Marshall C. Pease: The
Byzantine Generals Problem. ACM Trans. Program. Lang. Syst.
4(3): 382-401 (1982)

•Leslie Lamport: Time, Clocks, and the Ordering of Events in a
Distributed System. Commun. ACM 21(7): 558-565 (1978)

•Philip A. Bernstein, Nathan Goodman: Concurrency Control in
Distributed Database Systems. ACM Comput. Surv. 13(2): 185-
221 (1981)

•Jim Gray and Leslie Lamport. Consensus on Transaction
Commit. 2005. http://research.microsoft.com/pubs/64636/tr-
2003-96.pdf

Distributed Data Management, SoSe 2015, S. Michel 84

http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/pubs/64636/tr-2003-96.pdf

