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ABSTRACT
Collection selection has been a research issue for years. Typ-
ically, in related work, precomputed statistics are employed
in order to estimate the expected result quality of each col-
lection, and subsequently the collections are ranked accord-
ingly. Our thesis is that this simple approach is insuffi-
cient for several applications in which the collections typ-
ically overlap. This is the case, for example, for the col-
lections built by autonomous peers crawling the web. We
argue for the extension of existing quality measures using
estimators of mutual overlap among collections and present
experiments in which this combination outperforms CORI,
a popular approach based on quality estimation. We outline
our prototype implementation of a P2P web search engine,
coined MINERVA1, that allows handling large amounts of
data in a distributed and self-organizing manner. We con-
duct experiments which show that taking overlap into ac-
count during collection selection can drastically decrease the
number of collections that have to be contacted in order to
reach a satisfactory level of recall, which is a great step to-
ward the feasibility of distributed web search.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—selection process, information filter-
ing ; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software—Distributed Systems
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1. INTRODUCTION

1.1 Motivation
Collection selection has been a popular research area in

distributed information retrieval for many years. Most of
the related work on this issue use pre-computed statistical
information to estimate the expected result quality of dif-
ferent collections en route to identifying the most promising
sources for an information need. A key goal from a per-
formance viewpoint is to minimize the number of individual
collections that have to be gathered in order to achieve good
result quality (usually measured in terms of recall in this dis-
tributed setting).

Also in recent years, the Peer-to-Peer (P2P) paradigm
has received increasing attention. While becoming popular
mainly in the context of filesharing systems such as Gnutella
or KaZaA, P2P has found its way into distributed informa-
tion retrieval due to its ability to handle huge amounts of
data in a distributed and self-organizing way. In a typical
P2P system, all peers are equal and all of the functionality
is shared among all peers so that there is no single point of
failure and the load is evenly balanced across a large number
of peers. These characteristics offer enormous potential ben-
efits for search capabilities powerful in terms of scalability,
efficiency, and resilience to failures and dynamics. Addi-
tionally, such a search engine can potentially benefit from
the intellectual input (e.g., bookmarks, query logs, etc.) of
a large user community. One of the key difficulties, how-
ever, is to efficiently select promising peers for a particular
information need.

As such, research in P2P searching enjoys a large over-
lap with research on distributed information retrieval and
can highly benefit from existing work. However, the pecu-
liarities of such an architecture require a different view on
some key aspects. For example, the absence of a central-
ized indexing facility together with the difficulties to calcu-



late global metrics in this large and highly dynamic network
hamper the use of traditional methods for collection selec-
tion. Also, the absence of a central control instance causes
the peers to learn about portions of the web in a largely un-
coordinated manner. Given typical popularity distributions
on today’s web, for example, it becomes obvious that these
autonomous peers will not form disjoint partitions of their
combined document space, but rather a highly overlapping
set of collections.

Existing collection selection approaches taking into ac-
count only the expected result quality of a collection will in-
evitably lose some of their power in a P2P setting. For exam-
ple, consider a scenario where two peers with high interest
in current affairs have (independently of each other) crawled
large fractions of a popular news site, such as cnn.com. A
traditional approach to collection selection is likely to rank
both peers high given a related query, even though their re-
sults may highly overlap. Because the second peer is likely
to not add many new documents to the query result, the
performance of the query can be improved if another, com-
plementary peer is chosen instead.

1.2 Contribution
Our main contribution lies in showcasing the dramatic

performance improvement possible by employing estimators
of mutual overlap of collections. We will also present a novel
technique for estimating a query-specific collection overlap
and a novel way to combine a popular quality estimation
metric with overlap estimators. Our overall goal is to make
large-scale distributed search feasible. With this paper, we
hope to make a decisive step toward this goal. We have im-
plemented our new technique within our prototype P2P web
search engine and we quantify the performance improvement
of our contribution.

Section 2 gives an overview of related research in the dif-
ferent fields that we touch with our work. Section 3 presents
the architecture of a distributed P2P search engine that was
used for our experiments. Section 4 briefly introduces CORI,
a popular approach for collection selection, that is used as
a baseline reference point for our work. Section 5 discusses
one approach to quantify overlap and novelty into the col-
lection selection process and introduces the necessary set of
tools, in particular Bloom filters. Section 6 describes how
we combine the measures for quality and novelty in a two-
step approach. Section 7 presents a number of experiments
to show the benefits of our approach. Section 8 concludes
and briefly discusses future research directions.

2. RELATED WORK
In recent years, many approaches have been proposed for

collection selection in distributed IR, among the most promi-
nent the decision-theoretic framework by [11], the GlOSS
method presented in [14], and approaches based on statisti-
cal language models [22, 27]. [5] gives an overview of algo-
rithms for distributed IR style result merging and database
content discovery. [11] presents a formal decision model for
database selection in networked IR. [19] investigates differ-
ent quality measures for database selection. [13, 16] study
scalability issues for a distributed term index. None of the
presented techniques incorporates overlap detection into the
selection process.

Estimating overlap of sets has been receiving increasing
attention recently for modern emerging applications, such

as data streams, internet content delivery, etc. [4] describes
a permutation-based technique for efficiently estimating set
similarities for informed content delivery. [12] proposes a
hash-based synopsis data structure and algorithms to sup-
port low-error and high-confident estimates for general set
expressions. Bloom [2] describes a data structure for suc-
cinctly representing a set in order to support membership
queries. [17] proposes compressed Bloom filters that im-
prove performance in a distributed environment where net-
work bandwidth is an issue.

[10] describes the use of statistics in ranking data sources
with respect to a query. They use probabilistic measures to
model overlap and coverage of the mediated data sources,
but do not mention how to acquire these statistics. In con-
trast, we assume these statistics being generated by the par-
ticipating peers (based on their local collections) and present
a DHT based infrastructure to make these statistics globally
available.

[28] considers novelty and redundancy detection in a cen-
tralized, document-stream based information filtering sys-
tem. Although the technique presented seems to be applica-
ble in a distributed environment for filtering the documents
at the querying peer, it is not obvious where to get these
documents from. In a large-scale system, it seems impossi-
ble to query all peers and to process the documents.

[18, 15] have also worked on overlap statistics in the con-
text of collection selection. They present a technique to esti-
mate coverage and overlap statistics by query classification
and data mining and use a probing technique to extract fea-
tures from the collections. Expecting that data mining tech-
niques will be very heavy for the envisioned, highly-dynamic
application environment, we adopt a different philosophy.
We adapt statistical methods and use them to estimate the
overlap between data collections and we develop novel al-
gorithms that utilize these for efficiently selecting the best
collections during query processing.

Recent research on P2P systems, such as Chord [23], CAN
[20], Pastry [21], P2P-Net [3], or P-Grid [1] is based on var-
ious forms of distributed hash tables (DHTs) and supports
mappings from keys, e.g., titles or authors, to locations in
a decentralized manner such that routing scales well with
n, the number of peers in the system. Typically, an exact-
match key lookup can be routed to the proper peer(s) in at
most O(log n) hops, and no peer needs to maintain more
than O(log n) routing information. These architectures in-
corporate algorithms to cope with failures and the dynamics
of a P2P system as peers join or leave the system in an un-
predictable manner. However, the approaches are limited to
the exact matching of keys, making them suitable for single
keyword queries on keys. This is however highly inappro-
priate when queries should return a ranked result list of the
most relevant approximate matches [7].

In the following we briefly discuss some prior and ongoing
projects toward P2P Web search.

Galanx [26] is a P2P search engine implemented using
the Apache HTTP server and BerkeleyDB. The Web site
servers are the peers of this architecture; pages are stored
only where they originate from. In contrast, our approach
leaves it to the peers to what extent they want to crawl
interesting fractions of the Web and build their own local
indexes.

PlanetP [8] is a publish-subscribe service for P2P com-
munities, supporting content ranking search. PlanetP dis-



tinguishes local indexes and a global index to describe all
peers and their shared information. The global index is
replicated using a gossiping algorithm. The system appears
to be limited to a few thousand peers.

Odissea [24] assumes a two-layered search engine architec-
ture with a global index structure distributed over the nodes
in the system. A single node holds the complete, Web-scale,
index for a given text term (i.e., keyword or word stem).
Query execution uses a distributed version of Fagin’s thresh-
old algorithm [9]. The system appears to cause high network
traffic when posting document metadata into the network,
and the presented query execution method seems limited to
queries with at most two keywords. The paper actually ad-
vocates using a limited number of nodes, in the spirit of a
server farm.

3. THE MINERVA P2P SEARCH ENGINE
ARCHITECTURE

We assume a P2P collaboration in which every peer is
autonomous and has a local index that can be built from
the peer’s own crawls or imported from external sources and
tailored to the user’s thematic interest profile. The index
contains inverted lists with URLs for Web pages that contain
specific keywords (a.k.a. terms).

A conceptually global but physically distributed directory,
which is layered on top of a Chord-style Dynamic Hash Ta-
ble (DHT), holds compact, aggregated information about
the peers’ local indexes and only to the extent that the in-
dividual peers are willing to disclose. We use the DHT to
partition the term space, such that every peer is responsible
for a randomized subset of terms within the global direc-
tory. For failure resilience, availability, and load balancing,
the directory entry for a term may be replicated across mul-
tiple peers. Thus, peers in our system can play two roles:
as directory peers and as peers storing index lists.

Directory maintenance, peer selection, and query process-
ing work as follows. First, every peer with a local index pub-
lishes a summary (Post) about every term in its local index
to the directory. A hash function is applied to the term in
order to determine the directory peer currently responsible
for this term. This directory peer maintains a PeerList of all
postings for this term from peers across the network. Posts
contain contact information about the peer who posted this
summary together with statistics to calculate IR-style mea-
sures for a term (e.g., the size of the inverted list for the
term, the maximum average score among the term’s inverted
list entries, or some other statistical measure). These statis-
tics are used to support the peer selection process, i.e., de-
termining the most promising peers for a particular query.

The querying process for a multi-term query proceeds as
follows: first, the query is executed locally using the peer’s
local index. If the result is considered unsatisfactory by the
user, the querying peer retrieves a list of potentially useful
peers by issuing a PeerList request for each query term to the
underlying overlay-network directory. Using database selec-
tion methods from distributed IR and metasearch [5], a num-
ber of promising peers for the complete query is computed
from these PeerLists. This step is referred to as peer selec-
tion. Subsequently, the query is forwarded to these peers
and executed based on their local indexes. Note that this
communication is done in a pairwise point-to-point manner
between the peers, allowing for efficient communication and

limiting the load on the global directory. Finally, the re-
sults from the various peers are combined at the querying
peer into a single result list; this step is referred to as result
merging.

The goal of finding high-quality search results with re-
spect to precision and recall cannot be easily reconciled with
the design goal of unlimited scalability, as the best informa-
tion retrieval techniques for query execution rely on large
amounts of document metadata. Posting only compact, ag-
gregated information about local indexes and using appro-
priate peer selection methods to limit the number of peers
involved in a query keeps the size of the global directory
manageable and reduces network traffic, while at the same
time allowing the query execution itself to rely on compre-
hensive local index data. We expect this approach to scale
very well as more and more peers jointly maintain the mod-
erately growing global directory.

The approach can easily be extended in a way that mul-
tiple distributed directories are created to store information
beyond local index summaries, such as information about
local bookmarks, information about relevance assessments
(e.g., derived from peer-specific query logs or click streams),
or explicit user feedback. This information could be lever-
aged when executing a query to further enhance result qual-
ity.

4. COLLECTION SELECTION
The following section briefly introduces CORI [5], one of

the best and most popular benefit estimators for collection
selection strategies that tries to estimate the expected result
quality of a collection using aggregated statistics about the
collections.

Following the terminology of the existing literature [6, 5],
we refer to various statistical measures as per collection mea-
sures; in our P2P context a collection is the local index
content of a peer. We consider only queries with equally
weighted terms; so a query is simply a set of terms.

CORI computes the collection score si of the i-th peer
with regard to a query Q = {t1, t2, ..., tn} in the following
manner:

si =
∑
t∈Q

si,t

|Q|

si,t = α + (1− α) · Ti,t · Ii,t

The computations of Ti,t and Ii,t use the number of peers
in the system, denoted np, the document frequency (cdf) of
term t in collection i, and the maximum document frequency
(cdfmax) for any term t in collection i:

Ti,t =
cdfi,t

cdfi,t + 50 + 150 · |Vi|
|V avg|

Ii,t =

log(np+0.5)
cft

log(np + 1)

where the collection frequency cft is the number of peers
that contain the term t. We approximate this value by the
number of peers that have published Posts for term t, i.e.,
the length of the PeerList for t. The values α and β are
chosen as α = β = 0.4 [6].

CORI considers the size |Vi| of the term space of a peer
(i.e., the total number of distinct terms that the peer holds



in its local index) and the average term space size |V avg|
over all peers that contain term t:

In practice, it is difficult to compute the average term
space size over all peers in the system (regardless of whether
they contain query term t or not). We approximate this
value by the average over all collections found in the Peer-
Lists.

5. NOVELTY ESTIMATION
As we have motivated in the introduction, considering

overlap is a crucial task in order to make large-scale dis-
tributed IR feasible. While existing approaches to collection
selection typically try to estimate the relevance of a collec-
tion to a given query, they do not consider the overlap with
other, previously contacted collections. However, it is ob-
viously inefficient to choose peers based on their relevance
only, as relevant documents are completely worthless if they
have been delivered by other collections before.

In our context, when estimating overlap, what we are ac-
tually interested in is the novelty of a peer with respect to
a given reference collection Cref : specifically, given a rep-
resentation of the document space that has already been
covered (e.g., by a local index or by other peers previously
queried), we are interested in the contribution that the col-
lection Ci of peer Pi can add to this space. More formally,
we define novelty as |Cp| − |Cp ∩ Cref |.

In this section, we discuss one approach of estimating the
novelty of collections. Doing so in a distributed environment
is a non-trivial task that becomes even more complicated as
we are not interested in the overall novelty between collec-
tions, but rather the novelty that the collections show in
their results for a particular query.

In related literature one can find numerous techniques to
represent sets in a compact way. For our experiments, we
use Bloom filters, one of the most popular technique for
this purpose and we develop our novelty estimator using
them. We want to emphasize, however, that our design is
fundamentally independent of the specific technique used
and allows for any other approach as well, as long as it
produces numeric scores for collection novelty.

5.1 System Architecture Revisited
We want to piggy-back all information necessary for nov-

elty calculation onto the Post messages described in Section
3. This choice avoids having to retrieve this information
at query time from a carefully selected subset of all peers
which would add an extra network round-trip communica-
tion and, thus, increase the latency encountered when exe-
cuting a query.

In order to be able to estimate the overlap between col-
lections, each collection publishes an appropriate summary
about the documents it contains. Note that these summaries
are fundamentally different from the summaries introduced
before that are used to estimate the result quality of peers.
Obviously, there are at least two conceptually different ways
to create and publish these summaries:

a) Create a summary for the complete collection and pub-
lish it on a per-peer basis using a separate DHT-based
directory.

b) Create term-specific summaries for (potentially a sub-
set of) all terms and include them with the standard
post process.

While the first strategy might seem to be more efficient in
terms of storage and bandwidth usage, we argue that strat-
egy b) is preferable for two reasons: First, for query per-
formance reasons, since it does not require an additional
directory lookup for each peer and, second, since it facili-
tates quality and novelty estimation of the peers’ collections
specifically for the queried terms. It is instructing to note
that a combination of these strategies in which each peer
would include a summary in the style of strategy a) with
every per-term post as illustrated in strategy b) would in-
troduce an enormous degree of redundancy. This would go
against the idea of efficiently using storage and bandwidth.
At the same time, it would suffer from the lack of query-
specificity illustrated before.

We assume that each peer holds one Bloom filter summa-
rizing each of its index lists; these can easily be precomputed
and stored in a database. We expect index lists (and, thus,
their Bloom filters) to be rather static, so that summaries
need not be reconstructed frequently. During the regular
Post process, these per-term Bloom filters are added to the
posts. Note that Bloom filters like all sparse bit vectors
can be compressed very well using standard compression
techniques like gzip in order to save bandwidth and storage
resources. Also, there are enhancements that produce com-
pressed Bloom filters [17] in order to save bandwidth and
storage resources.

5.2 Bloom Filters
A Bloom filter (BF) [2] is a simple data structure that

represents a set as a bit vector in order to efficiently (in time
and space) support membership queries. With bit vectors
being a very compact representation of a set, Bloom filters
are an ideal representation in our environment where storage
and bandwidth consumption is an issue.

For a particular set, a Bloom filter is a bit map of length m
and is created by applying k hash functions on each member
document, each yielding a bit location in the vector. Exactly
(and only) these positions of the Bloom filter will be set to
1. To check if a given element is in the set, the element is
hashed using the same hash function and the corresponding
k bits of the Bloom filter are examined. If there is at least
one of these bits that is not set to 1, the element is definitely
not in the set; otherwise it is conjectured that it is in the
set: There is a non-zero probability that the examined k bit
positions were set by other documents, thus, creating a false
positive. The probability of a false positive can be calculated
by pfp ≈ (1 − e−kn/m)k where n is the number of items in
the original set.

5.3 Handling Multi-Keyword Queries
Given the Bloom filter summaries for individual index

lists, we need a way to combine these in order to estimate the
novelty of collections with respect to multi-keyword queries.
The querying peer receives for each query term a number
of posts that contain summaries of the peers’ content plus
a Bloom filter that represents the index list for a particular
term at a particular peer. Now we consider a Peer Pi and the
set of its posted Bloom filters {bfi,t1 , bfi,t2 , bfi,t2 , ..., bfi,tr}
for the query terms {t1, t2, t3, ..., tr}. In order to get a sum-
mary that represents the set of documents of peer Pi that
contain all r terms (i.e., that are likely to be in the result
list that this peer would return), we combine the peer’s r
Bloom filters as follows:



Given two Bloom filters with the same hash function and
of equal length, it is possible to calculate the Bloom filter
that represents the intersection of the two sets by simply
combining both filters (i.e. bit vectors) using a bitwise AND
operation (cf. Figure 1). We denote this operation by &. For
a set {bf1, bf2, bf3, ..., bfr} of Bloom filters, the combined
Bloom filter is given by bfi := bf1&bf2&bf3&...&bfr. This
approximates the coverage of each Peer Pi with regard to
the query.

00 01 11 10

01 01 00 10&
00 01 00 10=

BF for term a
BF for term b
BF for “a and b” 

Figure 1: Combining Bloom Filters for Multi-
Keyword Queries

This calculation iterates for every query term.

5.4 Estimating Novelty
Given Bloom filter representations of the already seen

document space and of the peers in question, we need to
estimate the expected contribution (novelty) of each peer
Pi to the query result. For this purpose, we compare Pi’s
Bloom filter bfi (that was obtained by combining its indi-
vidual Bloom filters as described in Section 5.3) to the union
of the Bloom filters bfcomb :=

⋃
j∈S bfj , where S is the set

of peers already selected for being queried, as the represen-
tation for the document space that has already been covered
before. We define the novelty of Peer Pi (summarized in its
Bloom filter bfi) as

|{k|bfcomb[k] = 0 ∧ bfi[k] = 1}|

i.e., as the number bits that are set in Pi’s Bloom filter
that are not yet set in bfcomb.

Analogously, we define the overlap between bfcomb and
the Bloom filter of a peer Pi as

|{k|bfcomb[k] = 1 ∧ bfi[k] = 1}|

i.e., the number of bits that are set in both Bloom filters.
Note that this does not really yield the exact number of
overlapping documents, but only a relative approximation
that allows us to differentiate between several peers.

5.5 Discussion
The accuracy and, thus, the potential of our approach is

directly related to the false positive probability introduced
before, which in turn highly depends on the length of the
Bloom filters. We currently assume that all Bloom filters
across the system are of equal length, simplifying the bit op-
erations necessary in our approach. The approach based on
Bloom filters for estimating novelty was selected primarily
due to its simplicity for implementation. We are currently
in parallel developing alternative techniques based on min-
wise independent permutations [4] for this orthogonal but
important issue. With this length being a trade-off between
accuracy on the one hand and bandwidth and storage con-
sumption on the other hand, we have chosen the size of the
Bloom filters so that they are adequately able to represent
even the largest index lists in our experimental environment
and leave determining the optimal filter sizes for future work,
as it is outside the scope of this paper.

This issue becomes even more important bearing in mind
that Bloom filters are sent along with each Post, i.e., one
Bloom filter per (Peer × Term)-pair.

6. PUTTING IT ALL TOGETHER
Similar to [28] we model relevance and overlap separately.

To do so, we use a two-step approach that first ranks the
collections according to an arbitrary quality estimator that
yields numerical collection scores (like CORI) and subse-
quently re-ranks the collections incorporating their pair-wise
overlap.

Algorithm 1 Algorithm to combine quality and overlap

1: input: s[i] and bf [i] for each peer i ∈ P = {1...n}
2: output: ranking rank[r] with all peers
3: S := P
4: j := argmaxi∈S{s[i]}
5: bfcomb := bf [j]
6: rank[1] := j
7: S := S\{j}
8: for r = 2 to n do
9: quality[i] := computeQuality()

10: novelty[i] := computeNovelty()
11: j := argmaxi∈S{α · quality[i] + (1− α) · novelty[i]}
12: rank[r] := j
13: S := S\{j}
14: bfcomb := bfcomb ∪ bf [j]
15: end for

Algorithm 1 describes a simple combination of these two
measures for quality and overlap. The computation works
as follows: the algorithm has as input a set P of peers with
scores s[i] and Bloom filters bf [i] for each of these peers
(based on the quality estimation for a query). In the first
step the top-ranked peer (with the highest score) is consid-
ered as a starting point promising high quality results and
gets the highest rank. Note that we do not yet consider
overlap, as the first collection will by definition contribute
only novel documents, since no document has been seen be-
fore2. The further steps include picking the best peer of the
remaining set of peers S in a loop. The computation of the
best peer comprises the combination of quality and overlap
of a peer i using a combination factor α:

α · quality[i] + (1− α) · novelty[i]

Algorithm 2 Algorithm to compute the quality measure

1: input: s[i] for each peer i ∈ S = {1...m}
2: output: quality[i] for all peers i
3: smax := maxi∈S{s[i]}
4: for i = 1 to m do
5: quality[i] := s[i]/smax

6: end for

Algorithm 2 describes the computation of the quality mea-
sure for all peers i in a set of peers. Note that in our main
algorithm 1 the set S of peers decreases. The division by

2Yet this technique is easily applicable if we for example
query the local collection first. In that case, the local peer is
considered the top-ranked peer and the algorithm proceeds
as usual



the maximum score smax is used to normalize the original
scores s[i] of all remaining peers in S. This way quality[i]
of all peers is returned.

Algorithm 3 Algorithm to compute the contribution of a
peer

1: input: bfcomb, bf [i] for each peer i ∈ S = {1...m}
2: output: overlap[i] for all peers i
3: for i = 1 to m do
4: newDocs[i] := newDocs(bf [i], bfcomb)
5: oldDocs[i] := oldDocs(bf [i], bfcomb)
6: o[i] := newDocs[i]/log(oldDocs[i] + 2)
7: end for
8: omax := maxi∈S{o[i]}
9: for i = 1 to m do

10: novelty[i] := o[i]/omax

11: end for

The computation of the overlap measure for all peers i
is described in Algorithm 3. First, the algorithm computes
a not normalized measure o[i] by using the two functions
newDocs() and oldDocs(). Both of them combine Bloom
filters to estimate the number of new or old documents in
bf [i] in comparison to bfcomb. These two values are used to
calculate o[i] which increases with a higher number of new
documents and with a lower number of old documents. In
the second step, the algorithm takes the maximum value of
o[i] for normalization and returns overlap[i] of all remaining
peers.

The two functions newDocs() and oldDocs() pick up the
idea of novelty in Section 5. The newDocs() function returns
the number of set bits in the first Bloom filter which are not
set in the second one:

newDocs(bf1, bf2) := |{k|bf1[k] = 1 ∧ bf2[k] = 0}|

The function oldDocs estimates the number of already
seen documents and returns the number of bits that are set
in both Bloom filters:

oldDocs(bf1, bf2) := |{k|bf1[k] = 1 ∧ bf2[k] = 1}|

Using this algorithm we get a refined ranking of all peers
by considering quality and overlap. The combination factor
α is variable between 0 and 1 to emphasize one of the two
measures. In the case α = 1, the algorithm just takes the
original quality scores and delivers the same ranking of peers
we would get considering only the quality measure.

7. EXPERIMENTS

7.1 Experimental Setup
One pivotal issue when designing our experiments was the

absence of a standard benchmark. While there exist a num-
ber of benchmark collections for (centralized) Web search,
it is not clear how to apply these collections to our scenario.
While other studies partition these collections into smaller,
disjoint pieces, we do not think this is an adequate approach.
In contrast, we expect a certain degree of overlap among the
collections, with popular documents being indexed by a sub-
stantial fraction of all peers, but, at the same time, with a
large number of documents only indexed by a tiny fraction
of all peers.

# of documents 62,962
# of features 9,254,996

max. length of index list 35,196

Table 1: Reference Collection Statistics

For this work, we have created a random sample of the
GOV document collection [25] and partitioned it into dis-
joint fragments. Statistical details about this sample (sub-
sequently also referred to as reference collection) are shown
in Table 1. All recall measurements are relative to this ref-
erence collection. Collections were created by using various
strategies to combine these fragments. For a crude estimate
of the potential of our proposals, we have split our sample
into six fragments and created collections by choosing all
subsets with three fragments, thus, ending up with

(
6
3

)
=20

collections. For a more sophisticated analysis, we have split
the sample into 100 fragments and used a variety of strate-
gies to assign those to the collections:

• We randomly assigned/replicated each fragment to r
peers.

• We select a fraction alpha of all peers as hot. Each
fragment is assigned (replicated) r times, where each
replica goes to a random hot peer with probability beta
and to random cold peer with probability 1− beta.

• We use a sliding window over the fragments: the first
peer receives r (consecutive) fragments f1 to fr, while
the next peer receives the fragments from f1+offset to
fr+offset and so on. By doing so, we can systemati-
cally control the overlap.

For the query workload we took all 50 queries from the
topic-distillation track of the TREC 2003 Web Track bench-
mark [25].

All experiments were conducted on a prototype imple-
mentation of the MINERVA peer-to-peer web search engine
described in Section 3. We order all collections according to
their expected benefit to the query using CORI as a baseline
and our proposed strategy. Preliminary experiments have
shown that our algorithm produces the most robust results
for values of alpha around 0.8; the exact choice of alpha is
not critical, as the results for values of alpha between 0.6
and 0.9 showed only small differences. We therefore limit
our experiments to this specific value.

In the experiments we compare the improvements in recall
as we increase the number of peers that execute the query.
Please note that, in all experiments, the recall when query-
ing only one remote peer is equal for all strategies, as we
currently don’t take overlap into account when we have an
empty result set representation, i.e. the first peer is chosen
using the standard CORI method. The performance met-
ric (consistent with our long-term goal to make distributed
web search feasible) is the number of peers needed to be con-
tacted in order to achieve a combined result of acceptable
recall.

7.2 Experimental Results

7.2.1
(
6
3

)
Approach

We first conducted experiments on the 20 collections de-
rived from subsets of three fragments each as described above.



As shown in Figure 2, our approach substantially outper-
forms CORI, that tends to select similar and, thus, highly
overlapping peers. In order to reach a recall of 80%, for ex-
ample, CORI needs to contact six peers, whereas our strat-
egy can do the same with two peers. We would like to point
out that considering overlap only in this environment would
allow us to reach a recall of 100% with only 2 peers (because
there are pairs of 2 peers each that cover the whole reference
collection).
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Figure 2: Recall on 20 Peers

Next, we additionally duplicated each peer, i.e., ending
up with 40 peers. Theses results are presented in Figure 3.
As expected, CORI now shows improvement at only every
second peer, as each collection exists twice and is assigned
adjacent ranks when estimating their expected quality. Our
approach, however, shows continuous recall improvements,
as the mirror collections are pushed down in the peer rank-
ing. Even though this setting might seem fitted to our strat-
egy, we argue that mirrored collections appear frequently in
real-life, e.g., collections are duplicated in order to achieve
fault-tolerance. This is particularly true in a P2P setting
were replication is a mean to cope with the high dynam-
ics of the system, as peers unpredictably enter and leave
the system. In this setting, our approach again outperforms
CORI in terms of both recall and number of peers required
to achieve recall thresholds.(cf. Figure 3).
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Figure 3: Recall on 2x20 Peers

7.2.2 Random Peers
On 20 peers created by randomly assigning each fragment

to 4 peers, the improvements seen by our approach were

smaller, because the pairwise overlap between the collections
is almost negligible. Thus, this is a worst-case scenario for
our algorithm. As can be seen in Figure 4, the improvement
is typically less than 5%.
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Figure 4: Recall on 20 Random Peers

7.2.3 Hot-Cold Approach
Next, we created peers using the alpha/beta-approach il-

lustrated above. We chose r = 4, alpha = 0.2, and beta =
0.8 and created 40 distinct peers. The results closely resem-
ble those obtained from the random collections, so we do
not show a separate figure due to space constraints.

7.2.4 Sliding Window
Finally, we created peers using the notion of a sliding win-

dow as described above. We chose r = 10 and offset=2 to
end up with 50 peers. Our approach again clearly outper-
forms CORI in this setting; in order to reach a recall of 80%,
for example, CORI on average needs to contact 20 peers,
whereas our strategy achieves this goal by contacting only 7
peers (Figure 5). It clearly shows substantial improvements
already and especially for a relatively small number of peers.
This underlines the importance of a powerful collection se-
lection strategy in a distributed search environment, where
efficiency in terms of bandwidth consumption and latency
mainly depends on the number of contacted peers.

CORI

CORI+Overlap(alpha=0.8)

CORI

CORI+Overlap(alpha=0.8)

CORI

CORI+Overlap(alpha=0.8)

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of queried Peers

R
ec

al
l

Figure 5: Recall on Sliding Window Peers

8. CONCLUSION
We have introduced a query-specific estimator of mutual

overlap between collections and presented a novel way to



combine it with existing quality estimation metrics such
as CORI. The experiments have proved the high potential
of overlap-aware collection selection. It can drastically de-
crease the number of collections that have to be queried in
order to achieve good recall. Depending on the actual degree
of overlap between the collections, we have seen remarkable
improvements especially at low numbers of queried peers.
This fits exactly with our scenario of distributed web search
where we want to put low limits in the number of peers in-
volved in a query. We believe this is a large step toward
making distributed, large-scale web search feasible.

We will extend our experiments to larger-scale data sets,
not only in the field of text retrieval but also in the field
of (semi-)structured data. We also plan to investigate the
influence of different quality selection estimators other than
CORI. Future work also includes further investigation on
choosing the most efficient size of Bloom Filters, considering
the trade-off between accuracy on the one hand and band-
width and storage consumption on the other hand. Also,
other estimators of mutual overlap will be studied for their
performance and estimation characteristics. A more thor-
ough analysis of the scalability and the actual resource con-
sumption of our approach is also on our agenda.
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